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1 Introduction

This document describes the constructors methods and properties which are included in
‘Matrix.dIl’ and which may be accessed in any Microsoft .NET environment. There are six
classes provided: Vector, Matrix, Graph, Complex, ComplexVector and ComplexMatrix.
These perform many common matrix and vector manipulations using both real and complex
arithmetic; and allow graphing and videos of the results.

In particular there is the inclusion of:

0] The powerful SVD calculation which permits the solution of (in a least squares
sense) any linear system of the form Ax=Db.

(i) The Fast Fourier transform which permits a spectral analysis of signals.

(iii) A powerful non-linear system solver.

(iv) Solution of Eigenvector and Eigenvalues of a square matrix.

2 Version history

2.1 Version 1.0.0.0

1.0.0.0 (9th April 2013)

Initial Version

1.0.0.2 (11th April 2013)

Correction to the bidiagonalisation routine

1.0.0.3 (12th April 2013)

Correction to the + Vector operator

1.0.0.4 (13th April 2013)

Correction to the SVD solve routine

1.0.0.5 (24th April 2013)

Addition of sort function, addition of singular_values function,
addition of Determinant function, addition of Minor function.
Improvement of the speed of convergence of routines involving
the SVD routine.

1.0.0.6 (24th April 2013)

Correction of a bug in the is_bidiagonal() routine

1.0.0.7 (25th April 2013)

Correction of the prototype of the singular_values routine.

1.0.0.8 (15th May 2013)

Addition of SVD_light and the related bidiagonalisation routine.
Addition of coordinate transformation functions. Addition of
is_orthogonal() function.

2.2 Version 1.0.*.*

1.0.1.0 (30th December
2013)

Addition of Graph class. Addition of excel read function to
matrix class.

1.0.1.1 2nd January 2014

Addition of Complex and ComplexVector classes permitting the
manipulation of complex numbers. Addition of various
componentwise functions.

1.0.1.2 9th January 2014

Addition of further properties and operators.

1.0.1.2 13th January 2014

Addition of non linear solve method to the Vector class.




1.0.1.3 28th January 2014

Addition of ComplexMatrix class including a complex SVD and
solve routines.

Addition of non linear solve method to the ComplexVector
class.

1.0.1.4 3rd February 2014

Addition of function to read a comma separated variable file.

1.0.1.5 20th February
2014

Correction of bug on csv_read and excel_read functions that
arose when the input data was non-numeric.

1.0.1.6 2™ April 2014

Addition of namespace ‘MathematicalServices’ to all classes.
Removal of excel read function to make the code CLS
compliant. Change of name of non_linear_solve routines to
nonlinear_solve. Nonlinfit and complexnonlinfit are now no
longer subclasses. ‘Calculate_Givens_parameters’ declared as
a static function within the Matrix and ComplexMatrix classes.
Signing of the dll so it can be put in the GAC.

1.0.1.7 10" April 2014

Major refactoring to enable the code and exported properties
and methods to meet Microsoft naming, style and design
guidelines for managed code. Provision of functions for those
languages which do not support overloaded operators.

1.0.1.8 Addition of JacobiSVD routine

1.0.1.9 Addition of matrix (contour) plotting together with cosmetic
improvements to all plotting routines.

1.0.1.10 Addition of Bezier curves to the matrix class. Improvements to

the SVDsolve routine.

1.0.1.11 13" May 2014

Speed improvements to those routines using an SVD
decomposition.

1.0.1.12 16" May 2014

Further improvements to the SVD related routines.

1.0.1.13 23" May 2014

Further speed improvements to the real SVD routines

1.0.1.15 3 June 2014

Speed improvement to SVDLight routine.

1.0.1.16 10" June 2014

Addition of colour, style and weight properties to plotted
vectors. Addition of a SaveAs function to save a graph in a
prescribed format.

1.0.1.19 11" August 2014

Addition of Edit method to matrix class to permit interactive
editing of the elements of a matrix.

1.0.2.0 28" August 2014

Addition of eigenvectors and eigenvalues routines.

1.0.2.2 8" September
2014

Improvements to the convergence of the complex SVD routine.

14" September 2014

Addition of Bidiagonalization routine to ComplexMatrix class.

1.0.2.5 15" September
2014

Addition of Orthogonal Eigenvectors calculation method.
Improvements to the convergence of the complex SVD method

1.0.2.6 30" September
2014

Addition of vector Edit method.

1.0.2.7 7™ October

Addition of Image method

1.0.2.8 21%' October 2014

Improvements to the Image method.
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1.0.2.9 26" October 2014

Change of labels on the Image method

1.0.2.10 29t October 204

Addition of fill method for contour plotting.

1.0.2.11 29" October
2014

Determinant method is now calculated via the SVD and is
present in the paid for version only.

1.0.2.12 31st October
2014

Change of the signature of the SingularValues method so that it
does not invoke call by reference.

1.0.2.13 3 November
2014

Addition of annotations to the graph class.

1.0.2.14 10" November
2014

Addition of singular vectors and values plotting option to the
Matrix image method.

1.0.2.15 17" November
2014

Change of prototype of Eigenvalues function.

1.0.2.16 4™ April 2015

Addition of LU decomposition.

1.0.2.17 17" April 2015

Addition of zoom and scroll properties to the graph class.
Addition of NonlinearFit2 function.

Addition of Eigenvector routine for finding a single eigen pair.

1.0.3.0 22" April 2015

Separation of versions locked to one computer and one that is
not.

1.0.3.1 27" April 2015

Bug fix to the image function (eigenvectors when the matrix is
not square).

1.0.3.1

Addition of 3D plot, movie classes, various bug fixes.

2.3 Manual History

1st April 2013 Initial document.

10th April 2013 Correction to the expression for Ain section 8.5.49.

Correction to section 8.5.6

11th April 2013 Removal of the manual from the distributed zip file. The up-to-date

manual is now available online to download.

Removal of the restriction, m > n, in section 8.5.6.

12th April 2013 Addition of Eye matrix.

24th April 2013 Addition of description of new functionality of 1.0.0.5.

Addition of a table of contents.

24th April 2013 Addition of Version 1.0.0.6

27th April 2013 Corrections to the SVD solve routine description.

15th May 2013 Addition of Version 1.0.0.8 information.

21st June 2013 Addition of scalar division operator for the matrix class (manual omission

only).

23rd December Addition of Graph class. Addition of function to read an Excel sheet into
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2013

a matrix.

1st January 2014 | Corrections to introduction and version history.
2nd January Addition of Complex and ComplexVector classes.
2014

9th January 2014

Addition of further properties and operators.

13th January

Addition of non linear solve function to the Vector class

2014

20th January Addition of Householder bidiagonalisation function to the manual.
2014

28th January Addition of ComplexMatrix class including a complex SVD and solve
2014 routines.

Addition of non linear solve method to the ComplexVector class.

3rd Febraury
2014

Addition of function to read a comma separated variable file.

26th March

Renaming ‘max_no_SVD_loops’ to ‘max_no_loops’

2" April 2014

Addition of namespace ‘MathematicalServices’ to all classes. Removal
of excel read function to make the code CLS compliant. Change of
name of non_linear_solve routines to nonlinear_solve. Nonlinfit and
complexnonlinfit are now no longer subclasses.

‘Calculate _Givens_parameters’ declared as a static function within the
Matrix and ComplexMatrix classes. Signing of the dll so it can be putin
the GAC.

10™ April 2014

Major refactoring to enable the code and exported properties and
methods to meet Microsoft naming, style and design guidelines for
managed code. Provision of functions for those languages which do not
support overloaded operators.

18™ April 2014

Addition of JacobiSVD routine.

2" May 2014

Addition of matrix (contour) plotting together with cosmetic
improvements to all plotting routines.

9% May 2014

Addition of Bezier curves to the matrix class.

16" May 2014

Enhancements to the BidiagonalizationLight and SVDLight routines.

234 May 2014

Speed improvements to real SVD routines.

10™ June 2014

Addition of colour, style and weight properties to plotted vectors.
Addition of a SaveAs function to save a graph in a prescribed format.

11™ August 2014

Addition of Edit method to matrix class to permit interactive editing of the
elements of a matrix.

28" August 2014

Addition of Eigenvectors and Eigenvalues routines.

14" September
2014

Addition of Bidiagonalization routine to ComplexMatrix class.

15" September
2014

Addition of Orthogonal Eigenvectors calculation method. Improvements
to the convergence of the complex SVD method

30" September
2014

Addition of vector Edit method.
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7t October 2014

Addition of image method to matrix class.

215t October

Improvements to the Image method description.

2014

26™ October Change of labels on the Image method.

2014

29" October Addition of fill method for contours. Formatting improvements to the
2014 contour plotting routines.

29" October Determinant method is now calculated via the SVD and is present in the
2014 paid for version only

39 November
2014

Addition of annotations to the Graph class.

4" April 2015

Addition of LU decomposition.

17 April 2015

Addition of zoom and scroll properties to the graph class.
Addition of NonlinearFit2 function.
Addition of Eigenvector routine for finding a single eigen pair.

22nd April 2015

Separation of versions locked to one computer and one that is not.

14t June 2017

Addition of Video class, Addition of Graph3D class.

7t April 2017

Addition of Nelder Mean solve function.

17t April 2020

Addition of Neural Network class.

29t December
2024

Addition of GraphExport class. Various additions to filling in contour maps.
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3 License Conditions

The vendor of this software makes no warranty that the software is free from defects or that
it is suitable for any particular purpose — although efforts have been made to ensure that it is
so. It is the user’s responsibility to verify the accuracy of the software and the calculations
performed, for any particular task.

The use of this dll is governed by English law.

4 Installation Instructions
Unzip the downloaded file to reveal:

e The Matrix.dll file

Use of this software implies acceptance of the license condition contained in the license file
and above.

To access the method and properties in the dll add it as a reference to you Microsoft C#
.NET, VB.NET or C++/CLI .NET project:
R eeeTT S TR 0 . SeaaEE B S 0 eSS

File Edit View Refactor Project Build Debug Team Data Tools Test Window Help

P90 - (S @ 4 3 AddWindows Form.. ixed Platforms ~| | # | zero_tolerance B i fec U 7 o
i) by ax (fg| =2 E Add User Control..
@] Add Component...
&) Solution Explorer x
o S G, 4 General
7 EEallEk ]9 Givens_post_ multiplication(int , int k, double ¢, double's) -
& - :5 Add NewItem... Ctrl+Shift+ A
' (] Solution "Matri' (2 | S o
S . Matrix [ Add Existing ftem... Shift+ Alt+ A T There are no usable controls in this group.
B = Drag an item onto this text to add it to the
- > [zl Properties Exclude From Project toolbox.
» Ll References | o ghow Al Files
] Matrix.cs
] Vector.cs Rescan Solution
4 | matrix_cs test | Add Reference... ntity(nrows);
= it 1s);
> [l Properties Add Service Reference... neity(ncols)
» [« References . StartUp Proj
2] Program.cs et a5 StartUp Project W_ops; j++)
= Project Dependencies...
“ E‘I:“—f”’”"“ s umniector (). SubVector (j, ‘nrows - 1).Housholder_vector();
#] Test_forr Project Build Order... trix(nrows -, nrows -1}
) Testforr £y pgrech Project Toolbox ltems ity(nrows-) - 2.8%house.matrix()*house.matrix().transpose()/house. dot(h
(nrows,nrows) ;
[E] Matrix Properties... Alt+F7
——
Matrix T_part = Matrix,Tdentity(3); O
---P.SetSubMatrix(@,j-1,0,j-1,I_part);
P.5etSubMatrix(j,nrows-1,3,nrows-1,P_part);
|
else
ot
P.assign(P_part);
o}
this.assign(P*this);
- -UL-=P*UL;
---if-(j-<-no_col_ops) Properties - x
-Vector-house2-=-GetRowVector () . SubVector(j-+-1, -ncols- - -1).Housholder_vector(); Ty
trix-Q_part = new-ratriz(ncols-i-1,ncols-j-1); A=
-Q_part-=-Matrix.Identity(ncols-j-1)- --2.0%house2.matrix()*house2.matrix().transpose()/house2
atrix-Q = new Matrix(ncols,ncols);
00% - < n |
Output > B x
Show cutput from: |Debug -/ o |“J _4| x\ =
Bt iAo TET eSS TUSTIOS (FETAEE (U TOTI03T5T, - ¥ e Cr LA 5
matr‘n{ cs, test harness.vshost.exe' (Managed (v4.8.38313)): Lnaneﬂ "C: \Paul Fuy\natmx\matmx s tEst hame
A first chance exception of type 'System.InvalidOperationException' occurred in Matrix.dll
An unhandled exception of type 'System.InvalidOperationException’ occurred in Matrix.dll
Additional information: Zero tolerance must be a positive number. EI
The program '[4288] matrix_cs_test_harness.vshost.exe: Managed (v4.8.38319)' has exited with code @ (@x8).
< . I E m, »
EoEM ez . BE e IR W T B CodeDefinition Window JER0NeNd B8 Command Window B3 Find Results1 [ Error List & Find Symbol Results
Ttem(s) Saved Ln1142 Col 20 Ch20 INS

‘:.:' E! & O 2 @mm@mam s moe m,';i:,'nzlma ’

It is recommended that each file of your C# code contains the statement:

using MathematicalServices;

Otherwise each class in this document will have to be prefixed (such) as:
MathematicalServices.Matrix m = new
MathematicalServices.Matrix (3,4);
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5 Vector class

This class permits manipulation of arbitrary length vectors, whose elements are real
numbers.

5.1 Constructors

5.1.1 Vector()

This default constructor initialises a 3-dimensional vector and sets all of its elements to zero.
The index of the array of elements is zero based.

C# example:

Vector v = new Vector():;

5.1.2 Vector(int n)

This constructor initialises a vector of dimension nand sets all of its elements to zero. The
index of the array of elements is zero based.

C# example:

Vector v = new Vector(4);

5.1.3 Vector(Vector v)

This constructor initialises a vector having the same dimensions as Vv, and also having the
same elements as V.

C# example:
Vector vl = new Vector(3);
vli[1l]=1.5;
Vector v2 = new Vector (vl);

5.2 Properties

5.2.1 Vector Abs

Returns a vector whose elements are the absolute value of the corresponding elements of
the parent vector.

C# example:

Vector r = v.Abs;

Vector s = v.Exp;

Vector t .Cos;

Il
<

Vector u = v.Sin
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5.2.2 ComplexVector ViewAsComplex
Allows the parent vector to be regarded as a vector whose elements are complex numbers.

C# example:

Matrix mat = Matrix.CsvRead(str) ;

Vector r = mat.GetColumnVector (1) ;
ComplexVector R = new ComplexVector (r.Dim);
ComplexVector rc = r.ViewAsComplex;

R = rc.Fft (),

5.2.3 Vector Cos

Returns a vector whose elements are the cosine of the corresponding elements in the parent
vector. See 5.2.1.

5.2.4 int Dim
Returns the dimension of the vector — read only.

C# example:

int dimension;
Vector v = new Vector(3);

dimension = v.Dim

5.2.5 Vector Exp

Returns a vector whose elements are the exponential of the corresponding elements of the
parent vector. See 5.2.1

5.2.6 [i]

Gets and sets the ith element of the vector. Here i is greater than or equal to zero and less
than the dimension of the vector. If access outside of this range is requested an error is
thrown.

C# example:

double elementl, element2;
elementl=1.5;
v[0]=elementl;

element2=v[1l];

5.2.7 Vector Log

Returns a vector whose elements are the log to the base 10 of the corresponding elements
of the parent vector.

5.2.8 double Max
Returns the maximum of all the elements of the vector.
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5.2.9 double Min
Returns the minimum of all the elements of the vector.

5.2.10double Mean
Returns the mean of all the elements of the vector.

C# example:

double mn;

mn = v.Mean;

5.2.11 Modulus
Read only property to return the modulus or 2-norm of the vector. If v = (v,,V;,...,V, ;) then

the modulus is: V| = Vo * Vg +... 4V, ¥V, .

C# example:

If (v.Modulus < 1.0e-7)
{

break

5.2.12 Vector Sin

Returns a vector whose elements are the sine of the corresponding elements of the parent
vector. See5.2.1.

5.2.13 double Sd
Returns the standard deviation of the elements of the vector. This is the quantity:

Z{V—1(Vi — 1)?

o= N

where p is the mean of the data.
C# example:

double s;

s = v.Sd;

5.2.14 UnitVector

. v . .
This returns H If Vis the zero vector an error is thrown.
\;

C# example:

If ( Math.Acos(vl.UnitVector[2]) > 0.999 )
{
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// vector is perpendicular

5.3 Overloaded operators

5.3.1 + operator

If v,and v, are vectors this permits the expression v, +V,to return a vector. If v, and v, are
not of the same dimension an error is thrown.

C# example:

Vector v = vl + v2;

5.3.2 Add(Vector v)
Adds Vvto the parent. To be used in languages that can not overload +.

C# example:

Vector v = v1.Add(v2);

5.3.3 - operator

If v,and v, are vectors this permits the expression v, —Vv,to return a vector. . If v, and v, are
not of the same dimension an error is thrown.

C# example:

Vector v = vl - v2;

5.3.4 Subtract(Vector v)
Subtracts vfrom the parent. To be used in languages that can not overload -.

C# example:

Vector v = vl.Subtract(v2);

5.3.5 *operator

If vis a vector and A a scalar this permits both the expression A*v and V* A to return a
vector. The multiplication of the vector by the scalar is component-wise.

C# example:

double lambdal = 1.4;

double lambdaz = 0.6;

Vector v = (lambdal * v1) * lambdaZ2;
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5.3.6 Multiply(double d)

Multiplies the parent by d . To be used in languages that can not overload *. d may also be
complex.

C# example:

Vector v = v1.Multiply(d);

5.3.7 operator/

If vis a vector and A a scalar this permits the expression v/ A to return a vector. If 1is zero
an error is thrown. The division of the vector by the scalar is component-wise.

C# example:

double lambda = 2.0;
Vector v = vl / lambda;

5.3.8 Divide(double d)

Divides the parent by d. To be used in languages that can not overload /. d may also be
complex.

C# example:

Vector v = vl.Divide (d);

5.3.9 operator ==

Returns true if two classes are identical i.e. they refer to the same instance, or two instances
are element-wise identical. Otherwise false.

C# example:

Vector jumble = new Vector(5);

Vector sorted = new Vector (5);

int[] 1loc = new int[5];

Jumble [0] 5; jumble[l] = 1; jumble[2] = 4; jumble[3] = 2;
jumble[4] = 8;

sorted[0] = 5; sorted[l] = 1; sorted[2] = 4; sorted[3] = 2;
sorted[4] = 8;

if (sorted == jumble)

{

}

else 1if (sorted != jumble)

{
sorted.Assign (jumble.Sort (loc));
}

5.3.10 operator !=
Returns false if two classes are identical. Otherwise returns true.
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C# example:
See 5.3.9.

5.4 Methods

5.4.1 Assign
If v,and v, are two vectors of the same dimension this method is the C# way of performing
v, =V,. If v;and v, are not of the same dimension an error is thrown.

C# example:

v1l.Assign (v2);

5.4.2 Vector ConvertVectorFromLocalSystem(Matrix M)

This function converts a vector expressed in a local coordinate system to that of a new
coordinate system. The vector returned is that of the vector expressed in the new coordinate
system. M is an orthogonal transformation matrix whose columns represent the axes of the
local system expressed in terms of the coordinate system that we are transferring to.

Matrix M = new Matrix(3, 3);
M.SetColumnVector(@, x_axis);
M.SetColumnVector(1l, y_axis);
M.SetColumnVector(2, z_axis);

Vector CN_new = new Vector(CN_local.ConvertVectorFromLocalSystem(M)),;

5.4.3 Vector ConvertVectorToLocalSystem(Matrix M)

This function converts a vector to that of a local coordinate system. M is an orthogonal
transformation matrix whose columns represent the axes of the local system expressed in
terms of the coordinate system that we are converting from.

5.4.4 Vector Convolution(Vector v)

If uis the parent vector of length mand v has length nthen this method returns the vector
wof length m+n—1whose ith element is:

wlil= D uljIvli - j +1]

j
Here the summation is over all values of j which give rise to legal subscripts for u[ j]and
v[i—j+1].

C# example:

h = f.Convolution(g);

5.4.5 Vector Crosscorrelation(Vector v, Boolean normalise)

This method returns the cross correlation of two vectors of the same length. If the vectors
are of a different length an error is thrown.
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If uis the parent vector of length N and vis also a vector of this length this method
computes the vector wof length 2N —1. The nth element (N +1<n<N -1)is:

Ninil(i)v(n +1)ifn>0
win] = dig
_ZU(i)V(n +1)ifn<0

The actual vector returned f *gis suchthat f *g[i]=W[-N +1+i] (0<i<2N-1).

If normalise is set to true W[n]is divided by N —|n|.

5.4.6 double Dot

Returns the dot product with another vector v. If Vis not of the same dimension as the
parent an error is thrown.

C# example:

if ( Math.Acos( vl1.Dot(v2) ) > 0.99999 )
{

// vectors are parallel

5.4.7 void Edit()

Displays a dialogue in which it is possible to view the vector and edit its contents. To change
a cell: select it, type in the new value and click elsewhere so the focus of the cell is lost.
Press the update button to commit the changes to the vector. Press the cancel button to quit
the form without committing any changes.

C# example:

Vector v = new Vector(4);
v.Edit () ;

5.4.8 Vector GaussVector()

Given an ndimensional vector X, this method returns an ndimensional vector vwith the
property that:

i, v[0]=1.0
i, V[i]=—x[i]/x[0]for i=1to n—1

If Xx[0]is zero an error is thrown.

C# example:

Vector x = new Vector (5);

For (int i = 0; 1 < x.Dim; i++)
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}

Vector v = x.GaussVector();

5.4.9 Vector HouseholderVector()

Given an hdimensional vector Xthis method returns an hdimensional vector Vwith the
property that:

i. v[0]=1.0
ii. (I - Z%Jx is zero in all but the first component (here 1, is the nby nidentity
matrix)
C# example:
Vector x = new Vector (5);
For (int i = 0; 1 < x.Dim; i++)
{
x[i] = 1 + 1.0;

Vector v = x.HouseholderVector();

5.4.10 Boolean IsMonotonic()

Returns true if the elements of the vector are monotonic increasing. Otherwise it returns
false.

5.4.11 Boolean IsZero()

Returns true if every element of the parent is zero to within the tolerance of
Matrix.ZeroTolerance.

5.4.12 Matrix ViewAsMatrix()

This returns an nby 1 matrix from an ndimensional vector. This method is provided so that
a vector can be used in matrix computations such as in ii of 5.4.9.

C# example:

Vector x = new Vector (5);
For (int i = 0; 1 < x.Dim; 1i++)
{
x[1] =1 + 1.0;
}
Vector v = x.HouseholderVector():;

Matrix P = Matrix.Identity(5)-
2.0*v.ViewAsMatrix () * (v.ViewAsMatrix () .Transpose())/v.Dot (v);
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5.4.13 double MaxL(ref int loc)

Returns the maximum of the elements of the vector. loCis set to be the index location at
which this maximum occurs.

C# example:

ComplexVector v = new ComplexVector (10);

int loc max = 0;
int loc _min = 0;
double max = v.Real.MaxL(ref loc max);

double min = v.Real.MinL(ref loc min);

5.4.14 double MinL(ref int loc)

Returns the minimum of the elements of the vector. locis set to be the index location at
which this minimum occurs.

C# example:
See 5.4.14.

5.4.15 Vector NelderMeanSolve(NelderMeanFit f, Vector h, Vector x, Vector y ,
int ref conv)

Let f be a function mapping R™ xR"to R", where m, nand p are positive integers. Let
f. be the projection of f onto the ith component of R” (1<i< p).Let xe R"™ and y e RP

p
Then this function returns 8 e R"such that S(B) =l y— f(x, B IIP=D_Ily, - f,(x. B) II’is a
i=1
minimum. The algorithm used is the Nelder-Mead simplex method. An initial vertex, g; is
provided by the parent vector. n further vertices are provided by the n dimensional vector h,
suchthat §; = ;1 + e;hi_1, 2 <i <n+1, where g; is a unit vector.

The technique employed is an iterative one involving successive replacements of the
vertices until one with sufficiently small residual is obtained. At this point the algorithm
terminates returning the vertex with the smallest residual and setting conv to 1.

If the maximum number of iterations, as given by Matrix.MaxNumberOfLoops, is exceeded,
the algorithm terminates with convset to O.

C# examples:

int noParameters = 6;

Vector pFit = new Vector(noParameters);

Vector pInit = new Vector(noParameters);
NelderMeadFit fn = new NelderMeadFit(vlosRotorD);
Vector h = new Vector(noParameters);

h[@] = 10.0 * Math.PI / 180.0;
h[1] = -10.0;

h[2] = 2.0;

h[3] = -3.0;

h[4] = -10.0 * Math.PI / 180.0;
h[5] = 10.8 * Math.PI / 180.0;

Matrix.ZeroTolerance = 1.0E-4;
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Matrix.MaxNumberOfLoops = 200;
pFit = pInit.NelderMeadSolve(fn, h, x, y, ref conv);

5.4.16 Vector NonlinearSolve(NonlinearFit f Vector x,Vector y, int ref conv)

Let f be a function mapping R™ xR"to K", where m, nand p are positive integers. Let

f. be the projection of f onto the ith component of R” (1<i< p).Let xe R"™ and y e RP
p

Then this function returns 8 e R"such that S(B) =l y— f(x, B IIP=D_Ily; - fi(x, B) II’is a
i=1

minimum.

The technique employed is an iterative one involving successive approximations f,to 5.

The first guess for £ is the value of the parent vector. The algorithm terminates successfully

(conv set to 1) if ||ﬂk —ﬂk_1|| < Matrix.ZeroTolerance, for some k <

Matrix.MaxNumberOfLoops. If the maximum number of iterations, as given by
Matrix. MaxNumberOfLoops, is exceeded, the algorithm terminates with convset to O.

This function is a generalisation of the classical Levenberg-Marquardt problem in which we
have a function hmapping RxR"to R, together with a 2-D data set (x;,y;) and we are

p
trying to minimise S(f) = Zl y, —h(x,,B) |°. Section 5.4.17 gives an alternative algorithm

i=1
which is more computationally intensive to implement, when the full generality is not needed.
You should decide carefully whether to use 5.4.16 or 5.4.17 as 5.4.17 is usually much
quicker.

C# examples:
Example 1
The following uses the example of [2], section 10.2.

Vector pInit = new Vector(3);
int conv = 9;

pInit[@] = 0.4;
pInit[1] = 0.1;
pInit[2] = -0.4;
Vector y = new Vector(3); //ensures y is set to zero
Vector x = new Vector(3); //not used in this example

NonlinearFit fn = new NonlinearFit(burdenfairesexample);

Matrix.ZeroTolerance = 1.0E-8;
Vector pFit = pInit.NonlinearSolve(fn, x, y, ref conv);

//pFit = (0.5, 0.8, -0.52359)

private Vector burdenfairesexample(Vector x, Vector b)
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Vector rtn = new Vector(3);

rtn[@] = 3.0*b[0]-Math.Cos(b[1]*b[2])-0.5;
rtn[1] = b[@]*b[@] - 81.0*(b[1]+0.1)*(b[1]+0.1)+Math.Sin(b[2])+1.06;
rtn[2] = Math.Exp(-1.0*b[@]*b[1])+20.0*b[2]+(10.0*Math.PI-3.0)/3.0;
return rtn;

}

Figure 1

Example 2

The following pseudocode shows how the routine may be used to find the parameters
describing a change of coordinate system (transformation matrix plus origin translation - 12
parameters), by fitting measured data points to a datum sphere with known centre and
radius. In this example m=3*no_points, n=12 and p = 4 (radius and centre of datum sphere).

Vector x = new Vector (3*no points);

//Populate x with the point cloud data of the original coordinate
system

Vector y = new Vector (4);

y[0] = datum sphere radius;

y[1l] = data sphere centrel0];

y[2] = data sphere centrell];

y[3] = data sphere centre[2];

NonlinearFit fn = new NonlinearFit (sphere fit);
Matrix.ZeroTolerance = 1.0E-5;

Matrix.MaxNumberOfLoops = 30;

int conv = 0;

Vector pFit = new Vector(12);

Vector pInit = new Vector(1l2);

pInit[0]=pInit[4]=pInit[8]=1.0; //(transformation matrix guess 1is
//a unit matrix. Change of origin is the zero vector.

pFit.Assign (pInit.NonlinearSolve (fn,x,y,ref conv));

//pFit contains the parameters

private Vector sphere fit(Vector x, Vector b)
{
Vector rtn = new Vector (4);
Sphere3D sphere = new Sphere3D();
//fi11l array ‘points’ of Point3D’s, in new coordinate system
with the data from x using b.
Point3DArray array = new Point3DArray(points, x.Dim/3);
array.FitSphere (sphere, ref conv);

rtn[0] = sphere.Radius;

rtn[l] = sphere.Centre[0];
rtn[2] = sphere.Centrell];
rtn[3] = sphere.Centrel2];

return rtn;

}

Figure 2
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5.4.17 Vector NonlinearSolve2(NonlinearFit2 f Vector[] x,Vector vy, int ref
conv)

Let f be a function mapping R™ xR"to R, where mand n are positive integers. Let
x;eR™and y, e R , 1<i< p, where p isthe dimension of y (or the size of the collection
p
X). Then this function returns S € R"such that S(f) = ZH y, — f(x., B)|I*is a minimum.
i=1
The technique employed is an iterative one involving successive approximations S, to 5.
The first guess for S is the value of the parent vector. The algorithm terminates successfully

(conv set to 1) if ||ﬂk —ﬂk_1|| <Matrix.ZeroTolerance, for some k <

Matrix.MaxNumberOfLoops. If the maximum number of iterations, as given by
Matrix.MaxNumberOfLoops, is exceeded, the algorithm terminates with convset to O.

C# example:

In this example m =3, n=7 and p = no_points.

Vector pInlt = new Vector (7);

pInit[0] = 12.0; //radius, actual is 10.0
pInit[l] = 1.1; //centre, actual is 1.0
pInit[2] = 2.2; //centre, actual is 2.0
pInit[3] = 3.1; //centre, actual is 3.0
pInit[4] = normal([0]; //axis
pInit[5] = normal[l];
pInit[6] = normal[2];
Vector y = new Vector (no_points); //Create the zero vector
Vector[] r = new Vector[no points];
for (i = 0; 1 < no _points; i++)
{
r[i] = new Vector (3);
r[i] [0] = points[i][0];
r[i] [1] = points[i][1];
r[i] [2] = points[i][2];
}
NonlinearFit2 fn = new NonlinearFit2(distance from point to circle);
Matrix.ZeroTolerance = 1.0E-5;
Matrix.MaxNumberOfLoops = 30;
int conv = 0;

Vector pFit = new Vector(7);
pFit.Assign (pInit.NonlinearSolve2 (fn,r,y,ref conv));

private Vector distance from point to circle(Vector r, Vector b)

{
double rtn;

//construct the circle

double radius = b[0];

Point3D centre = new Point3D(b[1l], b[2], b[3]);
Vector normal = new Vector (3);
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normal [0] = b[4];

normal[l] = b[5];

normal[2] = b[6];

normal = normal.UnitVector;

Circle3D circle = new Circle3D(radius, centre, normal);

Point3D point = new Point3D(r);
rtn = circle.DistanceTo (point);

return rtn;

}

Figure 3

5.4.18 Polynomial(double d)

If the parent vector is represented by the sequence (v,,V,,...,Vy_,) this function computes
N-1 )

the expression: Zvid' i.e. the result of the polynomial evaluated at d . d may also be
i=0

complex.

C# example:

Vector poly n = new Vector (3)

double d = 0.1;
double eval = poly n.Polynomial (d);

5.4.19 SetSubVector(int i ,int i,,Vector v)

Replaces the elements in the parent between the indices specified with those of vector v. If
the indices are out of range or i, <i,0r Vis of an incompatible dimension an error is thrown.

C# example:

v1l.SetSubVector (0,2,v2);

5.4.20 Vector Sort(int [] location)

This routine performs a bubble sort to return the elements of the vector sorted with respect
to size - with the largest element the first element in the sorted vector. Due regard is taken to
the sign of the elements. The new sorted location of each original element is held in

location (zer based)

C# example:

//0rder the singular values so that the largest appears first along the diagonal.
Vector diag = new Vector (S.Diagonal);

int[] loc = new int[cols];
Vector sort = new Vector(cols);
sort = diag.Sort (loc);
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S.SetDiagonal (sort) ;
Matrix tempU = new Matrix(U);
Matrix tempV new Matrix (V) ;

for (int 1 = 0; 1 < cols; i++)

{
U.SetColumnVector (loc[i], tempU.GetColumnVector (i)) ;
V.SetColumnVector (loc[i], tempV.GetColumnVector (i)) ;

5.4.21void Swap(int i,int j)
Interchanges elements iand j. If ior jare not valid array elements an error is thrown.

C# example:

Vector vl = new Vector (4);

v1.Swap (0, 3);

5.4.22 Vector SubVector(int i ,int i,)

This returns the vector between indices i,and i, inclusive of the parent. If the indices are out
of range or i, <i, then an error is thrown.

C# example:

Vector vl = v2.SubVector(0,2);

5.4.23 Matrix Transpose()
This method returns the vector as a 1 by n matrix.

C# example:

Vector v2 = new Vector (vl);

Matrix A = v2.Transpose();
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6 Complex class
This class permits the construction and manipulation of complex numbers.

6.1 Constructors

6.1.1 Complex()
Constructs a complex number whose real and imaginary parts are both zero.

C# example:

Complex ¢ = new Complex();

6.1.2 Complex(Complex c)
Constructs a complex number whose real and imaginary parts are the same as those of C.

C# example:

Complex cl = new Complex();
cl.Imaginary = 1.5;

Complex c2 = new Complex(cl);

6.1.3 Complex(double real ,double imag)

Constructs a complex number with real part real and imaginary part imag .

C# example:

Complex c¢c = new Complex(1.0,2.0);

6.2 Properties

6.2.1 Complex Cos

Returns the cosine of the complex number z . This is the expression — See 6.2.5

6.2.2 Complex Exp
Returns the exponential of the complex number. See 6.2.5

6.2.3 double Real
Reads or writes the real part.

6.2.4 double Imaginary
Reads or writes the imaginary part.

C# example:

double rl;

double im;
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Complex c = new Complex(c2);

rl = c.Real;

im c.Imaginary;

6.2.5 double Magnitude
Reads the magnitude of the complex number. If (X, y) represents the complex number then

its magnitude is \/X* +y? .

C# example:

double rl 1.0;
double im = 5.0;

Complex ¢ = new Complex(rl,im);

Double mag = c.Magnitude;

Complex s = c.Sin;
Complex e = c.Exp;
Complex cs = c.Cos;

6.2.6 double Phase
Reads the phase (or argument) of the complex number. This is the angle subtended in the

Argand diagram. Phase ¢ equals arctan 2(y,x). —7z<@<r.
C# example:

double rl = 1.0;

double im = 5.0;

Complex ¢ = new Complex(rl,im);

double ph = c.Phase;

double sg = c.Sqgrt;

6.2.7 Complex Sin
iz —iz
Returns the sine of the complex number z . This is the expression TR See 6.2.5.
i
6.2.8 Complex Sqrt
Returns the principal part of the square root of the complex number z. If z=x+1y,(y #0),
this is the expression ¢+ id where:

’ [\2 2 _ [,2 2
c= W,d:sign(y)\/ X+ ;( Ty . See 6.2.5.
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6.3 Overloaded operators

6.3.1 + operator

If cland c2are double or complex numbers this operator permits cl+ C2to return a complex
number.

C# example:

Complex ¢ = cl + c2;

6.3.2 Add(Complex c)

Adds cto the parent. To be used in languages which do not permit overloading the +
operator. Cmay also be real.

6.3.3 - operator

If cland c2are double or complex numbers this operator permits C1—C2to return a complex
number.

C# example:

Complex ¢ = cl - c2;

6.3.4 Subtract(Complex c)

Subtracts Cfrom the parent. To be used in languages which do not permit overloading the -
operator. Cmay also be real.

6.3.5 *operator

If cland c2are complex numbers and A is a scalar real number this operator permits c1* 4,
A*c2 and cl*c2to return complex numbers.

C# example:

double lambda;

Complex ¢ = cl*c2 + lambda*c2;

6.3.6 Multiply(Complex c)

Multiplies the parent by €. To be used in languages which do not permit overloading the *
operator. Cmay also be real.

6.3.7 operator /

If cland c2are complex numbers and A is a scalar real number this operator permits c1/ A4,

Alc2and cl/c2 to return a complex number. If A or c2are zero when acting as a divisor
an error is thrown.

C# example:

double lambda;
Complex ¢ = cl/c2 + c2/lambda;
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6.3.8 Divide(Complex c)

Divides the parent by €. To be used in languages which do not permit overloading the /
operator. Cmay also be real.

6.3.9 operator ==

Returns true if two classes are identical i.e. they refer to the same instance, or two instances
are element-wise identical. Otherwise false.

6.3.10 operator !=

Returns false if two classes are identical i.e. they refer to the same instance, or two
instances are element-wise identical. Otherwise returns true.

6.4 Methods

6.4.1 Complex Conjugate()
If (x,Y)is the complex number this function returns the complex conjugate: (x,—Y) . In this
document the conjugate of cwill be denoted by €

C# example:

double lambda;

Complex ¢ = cl.Conjugate();

6.4.2 void Assign(Complex c)
This permits assignment of one complex number to another.

C# example:

Complex ¢ = new Complex();

c.Assign(cl); // performs c = cl
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7 ComplexVector class

This class permits the construction and manipulation of vectors whose elements are
complex numbers.

7.1 Constructors

7.1.1 ComplexVector()
Initialises a 3 dimensional vector all of whose elements are zero.

C# example:

ComplexVector v = new ComplexVector () :;

7.1.2 ComplexVector(int dim)
Initialises a vector of dimension dim all of whose elements are zero.

C# example:

int dim = 3;

ComplexVector v = new ComplexVector (dim) ;

7.1.3 ComplexVector(ComplexVector v)
Initialises a vector to have the same elements and dimension as V.

C# example:

ComplexVector vl = new ComplexVector (3);
Complex ¢ = new Complex(3,4);

vli[l]=c;

ComplexVector v2 = new ComplexVector (vl);

7.2 Properties

7.2.1 int Dim
Returns the dimension of the vector - read only.

C# example:

int dimension;
ComplexVector v = new ComplexVector (3);

dimension = v.Dim

722 [i]

Gets and sets the ith element of the vector. Here i is greater than or equal to zero and less
than the dimension of the vector. If access outside of this range is requested an error is
thrown.

C# example:
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Complex elementl, element2;
ComplexVector v = new ComplexVector();
elementl=new Complex(1.5,1.0);
v[0]=elementl;

element2=v[1l];

7.2.3 Vector Abs

Returns the real vector, of the same dimension as the parent, whose ith element is the
magnitude of the i th element of the parent.

C# example:
see 7.2.6.

7.2.4 ComplexVector Cos

Returns the complex vector whose i th element is the cosine of the corresponding element
in the parent vector.

C# example:
See 7.2.5.

7.2.5 ComplexVector Exp

Returns the complex vector whose i ith element is the exponential of the corresponding
element in the parent vector.

C# example:

ComplexVector v = ComplexVector () ;
elementl=new Complex(1.5,1.0);

v[0]=elementl;

ComplexVector v2 = v.Exp;
ComplexVector v3 = v.Sin;
Complexvector v4 = v.Cos;
ComplexVector vb = v.Sqrt;

7.2.6 Vector Imaginary

Returns the real vector with the same dimension as the parent but each of whose elements
is the corresponding imaginary part of the parent.

C# example:

ComplexVector v = new ComplexVector();
v[0]=new Complex(1.5,1.0);

Vector vi = v.Imaginary;
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Vector vr v.Real;

Vector va v.Abs;

7.2.7 double Modulus
Read only property to return the modulus or 2-norm of the vector. If v = (v,,v,,...,V, ;) then

the modulus is: V]| = Vo *Vy +... 4V, *V, , .

C# example:

If (v.Modulus < 1.0e-7)
{

break

7.2.8 Vector Phase

Returns the real vector with the same dimension as the parent, but each of whose elements
is the corresponding phase of the parent.

7.2.9 Vector Real

Returns the real vector with the same dimension as the parent but each of whose elements
is the corresponding real part of the parent.

C# example:
see 7.2.6.

7.2.10 ComplexVector Sin

Returns the complex vector whose i th element is the sine of the corresponding element in
the parent vector.

C# example:
See 7.2.5.

7.2.11 ComplexVector Sqrt

Returns the complex vector whose ith element is the sqrt of the corresponding element in
the parent vector.

C# example:
See 7.25

7.3 Overloaded operators

7.3.1 + operator

If v,and v, are vectors this permits the expression v, +V,to return a vector. If v, and v, are
not of the same dimension an error is thrown.

C# example:
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ComplexVector v = vl + v2;

7.3.2 Add(ComplexVector v)

Adds vector Vto the parent. To be used in languages which can not override the + operator.
vmay be a real or complex vector.

7.3.3 - operator

If v, and v, are vectors this permits the expression v, —V, to return a vector. If v, and v, are
not of the same dimension an error is thrown.

C# example:

ComplexVector v = vl - v2;

7.3.4 Subtract(ComplexVector v)

Subtracts vector Vfrom the parent. vmay be real or complex. To be used in languages
which can not override the - operator.

7.3.5 *operator

If vis a vector and A a scalar this permits both the expression A*Vv and v*Ato return a
vector. A may be real or complex. The multiplication of the vector by the scalar is
component-wise.

If viand v2are vectors this operator permits the component-wise multiplication of vland
V2. If v2is zero an error is thrown.

C# example:

double lambdal = 1.4;
Complex lambda? = new Complex(0.0,0.6);

ComplexVector v = (lambdal * vl) * lambdaZz;

ComplexVector w v*V;

7.3.6 Multiply(double d)

Multiplies the parent by d . d may be real or complex. Componentwise multiplication of two
vectors is also possible. To be used in languages which can not override the * operator.

7.3.7 operator /

If vis a vector and A a scalar this permits the expression vV*/ A to return a vector. A may be
real or complex. The division of the vector by the scalar is component-wise. If A is zero an
error is thrown.

If viand v2are vectors this operator permits the component-wise division of Vland v2. If a
component of V2is zero an error is thrown.

C# example:
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double lambdal = 1.4;

Complex lambdaZ? new Complex(0.0,0.6);

ComplexVector v = (lambdal / vl) / lambdaZ2;

ComplexVector w v/v; //should be 1 in each component

7.3.8 Divide(double d)

Divides the parent by d . d may be real or complex. Componentwise division of two vectors
is also possible. To be used in languages which do not permit / to be overridden.

7.3.9 operator ==

Returns true if two classes are identical i.e. they refer to the same instance, or two instances
are element-wise identical. Otherwise returns false.

7.3.10 Operator !=

Returns false if two classes are identical i.e. they refer to the same instance, or two
instances are element-wise identical. Otherwise returns true.

7.4 Methods

7.4.1 void Assign(ComplexVector v)
If v,and v, are two vectors of the same dimension this method is the C# way of performing
v, =V,. If v, and v, are not of the same dimension an error is thrown.

C# example:

vl.Assign (v2);

7.4.2 ComplexVector Conjugate()
Returns a vector whose elements are the complex conjugate of those of the parent.

7.4.3 ComplexMatrix ConjugateTranspose()

For an ndimensional parent vector this method returns the 1x n matrix whose elements are
the complex conjugate of those of the parent.

7.4.4 ComplexVector Convolution(ComplexVector v)
Returns the vector which is the convolution of the parent with v. See 5.4.4.

7.4.5 Complex Dot(ComplexVector v)

Returns the dot product with another vector v. If Vis not of the same dimension as the
parent an error is thrown.

C# example:

Complex ¢ = w.dot (w.Conjugate())
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double d = c.Real - w.Modulus*w.Modulus //should be zero

7.4.6 void Edit()

Displays a dialogue in which it is possible to view the vector and edit its contents. To change
a cell: select it, type in the new value and click elsewhere so the focus of the cell is lost.
Press the update button to commit the changes to the vector. Press the cancel button to quit
the form without committing any changes.

C# example:

ComplexVector v = new ComplexVector (4);
v.Edit () ;

7.4.7 ComplexVector Fft()
This function uses a Cooley-Tukey method to return the discrete Fourier transform of the
parent vector. If X, is the series representing the parent vector where 0<n< N, N being

the dimension of the vector, then the vector returned is X, (0 <k < N)where:

2
N-1 mnk

Xy = ane N . Here irepresents the square root of minus 1.

=}

C# example:

Matrix mat = Matrix.CsvRead(str);

Vector r = mat.GetColumnVector(1);
ComplexVector R = new ComplexVector(r.Dim);
R = r.Fft();

7.4.8 ComplexVector Ifft()

This function computes the inverse discrete Fourier transform of the parent vector. Using the
notation of 7.4.7,

N-1 2—”ink
X, =— > X.eN
N i

C# example:

Matrix mat = Matrix.CsvRead(str);
Vector t = mat.GetColumnVector(9);
Vector r = mat.GetColumnVector(1);

int N = t.dim;
double dt = Math.Abs(t[1] - t[@]) / 1.@E12;
Vector £ = new Vector(N);
for (int i = @; 1 < N; i++)
{

f[i] = (1.0 / 1.8E12) * (1.0 / dt) * i / N;
}

ComplexVector R = new ComplexVector(N);
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R = r.Complex.Fft();
ComplexVector ir = R.Ifft();

Graph gr = new Graph();

gr.plot(t, r);

gr.plot(t, ir.Real);

gr.add_title("signal against time"); //graphs should be the same

7.4.9 Boolean IsZero()

This function returns true of the magnitude of every element of the parent is zero (less than
Matrix.ZeroTolerance). Otherwise the function returns false.

C# example:

If (v.IsZero())
{

Return converged;

}

7.4.10 ComplexMatrix ViewAsMatrix()
An ndimensional complex vector is to be viewed as an nx1complex matrix.

7.4.11 ComplexVector NonlinearSolve(ComplexNonlinearFit f , ComplexVector
X, ComplexVector vy, int ref conv)

Let f be a function mapping C" xC"to C”, where m, nand p are positive integers. Here
C is used to denote the field of complex numbers. Let f, be the projection of f onto the ith
componentof C? (1<i< p).Let xeC™ and y e CP Then this function finds 8 € C"such

that S(B) = zp:“ y, — f,(x, B) ||Pis @ minimum.

The technique employed is an iterative one involving successive approximations S, to 5.

The algorithm terminates successfully (conv set to 1) if ||,[J’k - [)’k_l|| <Matrix.ZeroTolerance,

for some k <Matrix.MaxNumberOfLoops. If the maximum number of iterations, as given by
Matrix.MaxNumberOfLoops, is exceeded the algorithm terminates with convset to O.

For success of the algorithm employed it is necessary that the parent vector starts fairly
close to the eventual solution £ . You should carefully analyse the situation you are trying to

solve to determine of 7.4.11 or 7.4.12 is the better algorithm to employ. 7.4.12 is usually
much quicker.

C# example:

The following is an example in which m = p=100and n=3.

int N = 100; // number of observations
ComplexVector x = new ComplexVector (N);
for (int 1 = 0; 1 < N; i++)
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x[1] = new Complex(-Math.Log(i+1),0.0);
}

ComplexVector v = new ComplexVector (3);
v[0] = new Complex(2.0,0.6);

v[1l] = new Complex(2.0,4.0);

v[2] = new Complex(-0.5,0.4);

ComplexVector y = new ComplexVector (N);
for (int 1 = 0; 1 < N; 1i++)
{
y[i] = v[0]+v[1]*(v[2]*x[1i]) .exp + x[1];
}

ComplexNonlinearFit fn = new (LMexample) ;

Matrix.ZeroTolerance = 1.0E-8;

int conv = 0;

ComplexVector pInit = new ComplexVector (3);
pInit[0] = new Complex (2.0, 0.0);

pInit[1l] = new Complex (3.0, 4.0);

pInit[2] = new Complex(-0.4, 0.3);

ComplexVector pFit = new ComplexVector (3);
pFit.Assign( pInit.NonlinearSolve (fn, x, y, ref conv) );

ComplexVector ysim = new ComplexVector (N);
for (int i = 0; 1 < N; i++)
{
ysim[i] = pFit[0] + pFit[1l] * (pFit[2] * x[i]).exp + x[i];
}

Graph gr = new Graph();
gr.plot(y.Real);

gr.plot (ysim.Real) ;

gr.add legend("experimental");
gr.add legend("simulated");

private ComplexVector LMexample (ComplexVector x, ComplexVector beta)

{

ComplexVector rtn = new ComplexVector (100) ;
for (int 1 = 0 ; i < 100; i++)
{
rtn[i] = beta[0] + betall] * (betal2] * x[i]).exp + x[i];
}

return rtn;
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7.4.12 Complex NonlinearSolve2(ComplexNonlinearFit2 f , ComplexVector [ ]
x,ComplexVector vy, int ref conv)
Let f be a function mapping C™ xC"to C , where m, and n are positive integers. Here C
is used to denote the field of complex numbers. Let x, eC and y;€C ,1<i<p, for
p
some integer p . Then this function finds S € C"such that S(f) = ZH y, — (X, B)|is a

i=1
minimum.

The technique employed is an iterative one involving successive approximations g, to 5.
The first guess for f is the value of the parent vector. The algorithm terminates

successfully (conv set to 1) if ||ﬂk — ,BH” < Matrix.ZeroTolerance, for some k <

Matrix. MaxNumberOfLoops. If the maximum number of iterations, as given by
Matrix. MaxNumberOfLoops, is exceeded, the algorithm terminates with convset to 0.

For success of the algorithm employed it is necessary that the parent vector starts fairly
close to the eventual solution £ .

7.4.13 Void SetSubVector(int il,int i2,ComplexVector V)
Replaces the elements in the parent between the indices specified with those of vector v. If
the indices are out of range or i, <i,or Vis of an incompatible dimension an error is thrown.

C# example:

v1l.SetSubVector (0,2,v2);

7.4.14 ComplexVector SubVector(int il1,int i2)
This returns the vector between indices i,and i, inclusive of the parent. If the indices are out
of range or i, <i, then an error is thrown.

C# example:

ComplexVector vl = v2.Subvector (0,2);

7.4.15 ComplexMatrix Transpose()
This is an operation that permits an ndimensional vector to be viewed as a 1x n matrix.
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8 Matrix class

8.1 Constructors

8.1.1 Matrix()

The default constructor initialises a 3-by-3 matrix each element of which is zero. Rows are
represented by the first index and columns by the second index. Both indices are zero
based.

C# example:

Matrix A = new Matrix();

8.1.2 Matrix(int m,int n)
This constructor initialises an mby nmatrix each element of which is zero.

C# example:

Matrix A = new Matrix(3,4);

8.1.3 Matrix(Matrix A)

This constructor initialises a matrix with the same number of rows and columns as A. The
elements of the matrix are the same as those of A.

C# example:
Matrix A = new Matrix (2, 3):;
Matrix B = new Matrix (A);

8.2 Properties

8.2.1 ComplexMatrix ViewAsComplex
Views the parent matrix as a complex matrix.

8.2.2 Diagonal
Returns the diagonal of the matrix. The matrix does not have to be square.

C# example:

|Vector diag = new Vector(S.Diagonal);

8.2.3 Max
Returns the maximum of all the elements of the matrix.

8.2.4 Min
Returns the minimum of all the elements of the matrix.
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8.2.5 Modulos

Returns the quantity: fZi,j Aﬁj where the summation is over all elements of the parent matrix
A.

8.2.6 int Nrows
A read only property giving the number of rows of the matrix.

C# example:

int m;

m = A.Nrows;

8.2.7 Ncols
A read only property giving the number of columns of the matrix.

C# example:

int n;

n = A.Ncols;

8.2.8 [i,]]
Gets and sets the [i, j] th element of the matrix.

C# example:

Double a,b;

a=1.5;
Al[2,3] = a;
b =A[1,2];

8.2.9 MaxNumberOfLoops

Permits reading and writing the maximum number of iterations that may be performed in the
SVD calculation. The default is 10000.

8.2.10 ZeroTolerance

Permits reading and writing the the value below which a number is considered to be zero for
the purposes of numerical computations. The value is a positive number greater than zero,
otherwise an error is thrown. Decreasing this value will mean that the SVD algorithm takes
more iterations to converge. The default is 1.0E-14.

8.3 Static methods

8.3.1 Matrix CsvRead(String s, int offset)

Reads a comma -seperated-variables file. The first offsetlines of the file are omitted, as this

is presumbed to be the header and the format of this does not matter. The remaining lines
are parsed and read using a ‘,” as a separator. If there is no data or the format of the data is
not consistent, not numeric or missing, an error is thrown.
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C# example:

String str = “C:\\downloads\\data.csv”;
Matrix A = Matrix.CsvRead(str,1l); //first line is the header

8.3.2 Matrix CsvRead2(String s, int offset, char options)
Reads a comma -seperated-variables file. The first offsetlines of the file are omitted, as this

is presumbed to be the header and the format of this does not matter. The remaining lines
are parsed and read using a ‘,” as a separator. If there is no data or the format of the data is
not consistent, an error is thrown. Options allows behaviour in the event of missing data in a
field, or non-numeric data in a field, to be specified:

e 1 -replace missing data with 0.0.
e 2 -replace non-numeric data with 0.0.
e 3 - replace both missing and non-numeric data with 0.0.

C# example:

String str = “C:\\downloads\\data.csv”;

Matrix A = Matrix.CsvRead(str,1,2); //first line is the header,
//replace non-numeric data with 0.0.

8.3.3 Matrix excel_read(String s) - no longer available

Reads the first sheet of a Microsoft Excel document. If excel is not loaded on the client
machine, or the sheet is empty, or there are missing elements in the array of cells, an error
is thrown.

C# example:

String str = “C:\\downloads\\data.xlsx”;

Matrix A = Matrix.excel read(str);

8.3.4 Matrix Eye(Int m,Int n)
A static method which return a matrix such that:

Eye(i, j) =0, fori# j

Eye(i,i)=1

8.3.5 CalculateGivensParameters(double a,double b,double ref c,double ref
S)

Given scalars a and b this function computes cand s (where cand S are related by
¢ =cos(d), s =sin(O)for some &) such that:

c s)(a r
= , for some scalar r.
AN
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8.3.6 Matrix ldentity(int m)
A static method which returns the m -by- midentity matrix.

8.4 Overloaded operators

8.4.1 + operator

If Ajand A,are matrices this operator permits A + A, to return a matrix. If A and A,are not
of the same dimension an error is thrown.

C# example:

Matrix A = Al + Al;

8.4.2 Add(Matrix A)

Adds matrix Ato the parent. A may be real or complex. To be used in languages which do
not permit + to be overridden.

8.4.3 - operator

If Ajand A,are matrices this operator permits A — A, to return a matrix. If A and A, are not
of the same dimension an error is thrown.

C# example:

Matrix A = Al - AZ2;

8.4.4 Subtract(Matrix A)

Subtracts A from the parent. A may be real or complex. To be used in languages which do
not permit - to be overridden.

8.4.5 *operator
e If Ais amatrix and Ais a scalar this operator permits both A* Aand A* Ato return a
matrix. The multiplication of the matrix by the scalar is component-wise.
e If Ajand A,are two matrices of compatible dimensions for matrix multiplication this
operator permits A * A,to return a matrix. If the dimensions are not compatible an
error is thrown.

e If Ais amatrix and Va vector this operator permits A*Vto return a vector. If A and
Vare not of compatible dimensions an error is thrown.

C# example:

Matrix A = Matrix.Identity();
Matrix B = (lambdal * A) * lambdaZ2;
Matrix C = A*B;

Vector v = new Vector (3);

V[0]=1.0; v[1l] = 2.0;
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Vector w = A*v;

8.4.6 Multiply(double d)

Multiplies the parent by d . d may be real or complex. To be used in languages which do not
permit * to be overridden.

8.4.7 Multiply(Matrix A)

Permits the parent to be multiplied by A. A may be real or complex. To be used in
languages which do not permit * to be overridden.

8.4.8 Multiply(Vector v)

Permits matrix vector multiplication of the parent. v may be real or complex. To be used in
languages which do not permit * to be overridden.

8.4.9 operator/

If Ais a matrix and A a scalar this operation returns A/ Ain a component-wise manner. If 1
is zero an error is thrown.

C# example:

Matrix A = (B/2.5);

8.4.10 Divide(double d)

Divides the parent by d .d can be real or complex. To be used in languages which do not
permit / to be overridden.

8.4.11 operator ==

Returns true if two classes are identical i.e. they refer to the same instance, or two instances
are element-wise identical. Otherwise returns false.

8.4.12 operator !=

Returns false if two classes are identical i.e. they refer to the same instance, or two
instances are element-wise identical. Otherwise returns true.

8.5 Methods

8.5.1 Assign
If Ajand A,are two matrices of the same dimensions this is the C# way of performing the
assignment A = A,. If Ajand A,are not of the same dimensions an error is thrown.

C# example:

Al.Assign (A2);
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8.5.2 Vector BezierCurve(double t)

8.5.3 Vector BezierCurve(Vector w,double t)
Given n+1control points b,,b,,...,b, represented by each row of the parent matrix the first

function calculates the integral Bezier curve of degree n , B(t), at the value of the
parameter t, defined by:

B(1) =3 b8, (1)

where

I .
B, , (1) =ﬁ(1—t)”"t' if 0<i<n, Ootherwise. Here 0<t<1.0.
’ L

This function is used to plot integral Bezier curves given their control points.

If there are less than 2 control points or there are less than 3 columns in the matrix an error
is thrown.

If wcontains the corresponding positive scalar weights w,,...,w, the second function
calculates:

Zn:Wibi B;.. (1)
B =2 ———,

Zwi Bi,n (t)

the rational Bezier curve of degree n. A wider range of curves including all the conics can be
represented by rational Bezier curves. If all weights are zero an error is thrown.

C# example:

The following example plots the rational Bezier curve representing a quadrant of a circle.

int N = 3;

// Initialise the N control points
Vector [] b = new Vector[N];

for (int i = 0; i < N; i++)

{

b[i] = new Vector(3);
}
b[@][0]=1.0; b[O][1]=0.0; b[O][2]=0.0;
b[1][@]=1.0; b[1][1]=1.0; b[1][2]=90.0;
b[2][©]=0.0; b[2][1]=1.0; b[2][2] = ©.0;

//Plot the graphs of the control points
Graph g = new Graph();
for (int i = @; i < N-1; i++)
{
Vector u
Vector v
for (int
{
uft]
v[t]

new Vector(100);
new Vector(100);
=0; t < 100; t++)

&t onon

b[i][e] + (t/99.@)*(b[i+1][0]-b[i][0]);
b[i][1] + (t / 99.@) * (b[i + 1][1] - b[il[1]);

g.Plot(u,v);
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//Plot the Bezier curves

Matrix M = new Matrix(N,3);

Vector weights = new Vector(N);

weights[@] = 1.0; weights[1] = 1.0; weights[2] = 2.90;
for (int i = 0; 1 < N; i++)

{
}

Vector ul = new Vector(1090);
Vector vl = new Vector(1090);
for (int t = 0; t < 100; t++)

M.SetRowVector(i,b[i]);

{
Vector w = M.BezierCurve(weights,t/99.0);
ul[t] = w[e];
vi[t] = w[1];

}

g.Plot(ul,vl); //Should be a quadrant of a circle.

8.5.4 Vector BezierCurve(double t,Matrix L ,Matrix R)

8.5.5 Vector BezierCurve(double t,Vector w,Vector wL,Matrix L ,Vector wR
,Matrix R)

The first of these functions stores in each of matrix L and R, n+1 control points such that
a reprameterization between 0.0 and 1.0 using these new control points will trace the original
curve from b, to B(t) in the case of L and from B(t)to b, in the case of R .

The second function stores, in addition the corresponding weights to retrace both of the two
curves.

If the various matrices and vectors are not of compatible dimensions an error is thrown.
C# example:

double alpha = 0.3;

Matrix left = new Matrix(N,3);
Matrix right = new Matrix(N,3);
Vector weightsLeft = new Vector(N);
Vector weightsRight = new Vector(N);
Vector w2 = M.BezierCurve(alpha,weights,weightsLeft,left,weightsRight,right);
Vector u2 = new Vector(1000);

Vector v2 = new Vector(1000);

Vector u3 = new Vector(1000);

Vector v3 = new Vector(1000);

for (int t = @; t < 1000; t++)

{
Vector w3 = left.BezierCurve(weightsLeft, t / 999.0);
u2[t] = w3[0];
v2[t] = w3[1];
Vector w4 = right.BezierCurve(weightsRight, t / 999.9);
u3d[t] = wa[o];
v3[t] = wa[1l];

}

g.Plot(u2, v2); //The curve from start to B(0.3).
g.Plot(u3, v3); //The curve from B(0.3) to end.
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8.5.6 Bidiagonalization(Matrix U ,Matrix V)

If Aisthe m-by-nparent matrix, (m>n), this method overwrites Awith B=U"AV ,
where B is upper bi-diagonal, U is an m-by - morthogonal matrix, and V is an n- by - n
orthogonal matrix. A can be recovered by calculating UBV " . Rows and columns are zeroed
using a series of Givens transformations.

C# example:

Matrix A

new Matrix (4, 3);

Matrix U = Matrix.Identity(4);
Matrix V

Matrix.Identity (3);

A.Bidiagonalization (U,V);

8.5.7 BidiagonalizationLight(Matrix U ,Matrix V)
Let A be the original parent mby nmatrix.

If m>n:

The algorithm computes an mby n matrix U with orthogonal columns, and an nby n
orthogonal matrix V . The nby nleft-most upper portion of A is overwritten by an nby n
upper bidiagonal matrix B . The lower portion is zeroed.

If m<n:

The algorithm computes an mby m orthogonal matrix U , and an nby m matrix V with
orthogonal columns. The mby m left-most upper portion of A is overwritten by an mby m
lower bidiagonal matrix B . The right portion is zeroed.

If the dimensions of the input matrices do not correspond to these dimensions an error is
thrown.

In all cases A is given by A=UBV .

C# example:
Matrix A = new Matrix (4, 3):;
Matrix U = new Matrix (4, 3);

Matrix V = new Matrix.Identity(3);
A.BidiagonalizationLight (U,V);
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8.5.8 ColumnHouseholder(Vector v)

Given the m-by -nmatrix A and a non-zero n-vector vwith v[0] =1.0 ,this method
T

. . A ) .
overwrites Awith AP, where P=1 — 27. The calculations are performed in a
V'V

computationally efficient manner. If vis not an n-vector an error is thrown.

8.5.9 double Determinant(ref int converged )

Calculates the determinant of a square matrix. If the matrix is non-square an error is thrown.
If the underlying SVD routine has converged, converged is set to 1. Otherwise it is set to 0.

C# example:

int conv = 1;

double det A.Determinant (ref conv);

8.5.10 double Dot(Matrix M)

If A is the parent matrix and both matrices are of dimension m by n this method returns the
value: i, Y%, A; ;M; j. That is a pointwise multiplication of the two matrices.

8.5.11 void Edit()

This method displays a dialogue which permits the elements of the matrix to be changed by
the user. To change a cell: select it, type in the new value and click elsewhere so the focus
of the cell is lost. Press the update button to commit the changes to the matrix. Press the
cancel button to quit the form without committing any changes. Rows or columns of the
matrix are plotted individually.

C# example:

Matrix A = new Matrix (4,4);
A.Edit (),

8.5.12int Eigenvalues(ComplexVector E)

If Aisthe nby n parent matrix this routine calculates the n complex numbers, A, which
together with n vectors, Vv ,satisfy the equation Av = Av.The eigenvalues A are returned as
a complex vector in E . The eigenvalues are sorted in terms of magnitude with the largest
first. If the underlying numerical routine used has not converged zero is returned, otherwise
one is returned. The routine used is a QR algorithm employing a Francis QR step. This
should converge in most cases. The convergence criteria is determind by
Matrix.ZeroTolerance and the maximum number of steps in the iteration by
Matrix.MaxNumberOfLoops. It may be possible to allow the routine to converge by
increasing one or both of these parameters.

If the matrix is not square an error is thrown.

C# example:

ComplexVector E new ComplexVector (7);
int Eig returnl = 1;
Eig returnl = A.Eigenvalues (E);
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8.5.13int Eigenvectors(ComplexVector Eval ,ComplexMatrix Evec)

8.5.14 int OrthogonalEigenvectors(ComplexVector Eval,ComplexMatrix Evec)

If Aisthe nby nparent matrix these routines calculates the nEigenvalues, A, which
together with the nEigenvectors Vv, satisy the equation Av = Av. The Eigenvalues are
returned as a complex vector in Eval. The corresponding Eigenvectors are returned as
columns of the complex matrix Evec The Eigenvectors and their corresponding
Eigenvalues are sorted in order of magnitude, with the largest first. If the underlying
numerical routine has not converged, or there is some kind of problem with the result, zero is
returned, otherwise one is returned.

The routine ‘Eigenvectors’ uses a QR algorithm employing a Francis QR step. This should
converge in most cases. Convergence will be problematic in the case of an orthogonal
matrix. In this case use the routine ‘OrthogonalEigenvectors’. The convergence criteria is
determind by Matrix.ZeroTolerance and the maximum number of steps in the iteration by
Matrix. MaxNumberOfLoops. It may be possible to allow the routine to converge by
increasing one or both of these parameters.

If the matrix is not square an error is thrown.

C# example:
Eig return = A.Eigenvectors(E,P);
if (Eig return == 1)
{
for (1 = 0; 1 < n; 1i++)

{

ComplexVector diff = new ComplexVector (n);

diff = E[1] * P.GetColumnVector (i) - A *
P.GetColumnVector (i) ;
if (diff.Modulus > (((double)n)*1.0E-8))

{
MessageBox.Show ("Complex Eigenvector routine has
failed");
return;

}
}

8.5.15double Eigenvector(Vector Eval,Vector initial , ref int conv)
Use this routine when it is known that the matrix has a single dominant eigenvalue i.e.
|4 >4, 2 4 = ... 2 4, | . In this case the routine will converge to A, (the return value) and

the associated dominant eigenvector ( Eval). Note, that in this case A, must be real. The
initial guess to the dominant eigenvector must have a component in the direction of the
dominant eigenvector. The routine employs the power method algorithm. This routine is
much less computational intensive than the ones for returning all the eigenvector/values, and
should be used when some information is known about the matrix.

8.5.16 void ElementaryRowOperation(int i,int j)

Swaps rows iand j.If ior jare not valid row indices an error is thrown.

C# example:

Matrix U = new Matrix (6,5);
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|U.ElementaryRowOperation(k, imax) ;

8.5.17 void GaussPreMultiplication(int k,Vector g)

Let Abe the mby nparent matrix. And let g be a Gauss vector of dimension m—K .Let
L(k) be the lower triangular m by m matrix of the form:

1 0 0
1
oll] , Where the Gauss vector occurs in the kthcolumn.
0 gln-1] 1

Then this function sets Ato L(k)* A, in a computationally efficient manner.

C# example:

//Get Gauss vector
Vector gauss = matrixU.GetColumnVector (k) .SubVector (k,Nrows -
1) .GaussVector () ;

//Perform left Gauss operation to update U
matrixU.GaussPreMultiplication (k,gauss);

8.5.18int GaussSeidel(Vector b, Vector xo, Vector x)

If Ais the parent matrix this routine uses the Gauss-Seidel iterative method to solve the
linear system Ax =D, starting with the initial estimate of X0. If the system converges
successfully 1 is returned. If the system fails to converge after max_no_loops iterations 0 is
returned. If x, is the estimate at the K th step the algorithm is deemed to have converged

when ||Xk — Xk_1|| < ZeroTolerance. If the dimensions of A, b, xor X0are incompatible or the
matrix is not square an error is thrown. If the algorithm encounters a pivot element (A ;)
which is zero an error is thrown.

C# example:

See 8.5.33.

8.5.19 Vector GetColumnVector(int i)

Return the ith column of the matrix as a vector. If iis less than zero or greater or equal to
the number of columns then an error is thrown.

8.5.20 Vector GetRowVector(int i)

Returns the ith row of the matrix as a vector. If iis less than zero or greater or equal to the
number of rows then an error is thrown.
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8.5.21 GivensPostMultiplication(int i,int k,double c¢,double s)

Let G(i,k,c,s) be the Givens matrix, where ¢ and S are calculated according to 8.3.5. This
G(,k,c,9)(,1)=c

_ _ _ G(ik,c,s)(k,k)=c

is the identity except that _ .
G(i,k,c,9)(i,k) =s

G(i,k,c,s)(k,i) = —s

The Givens post multiplication of a matrix A replaces Awith AG(i,k,c,s).

8.5.22 Givens_pre_multiplication(int i,int k,double c,double s)

Let G(i,k,c,s) be the Givens matrix, where ¢ and S are calculated according to 8.3.5. This
G(,k,c,9)(,1))=c

_ o G(i,k,c,s)(k,k)=c

is the identity except that _ .
G(i,k,c,9)(i,k)=s

G(i,k,c,s)(k,i) = —s

The Givens pre multiplication of a matrix Areplaces Awith G(i,k,c,s)" A.

8.5.23 Void HessenbergReduction()

The parent is operated upon to reduce it to an upper Hessenberg form i.e. zeros on all
elements below the sub-diagonal. The reduction is done using a series of Givens
transformations. If the matrix is not square an error is thrown.

8.5.24 Void HessenbergReduction(Matrix Q)

This method operates on the parent matrix, A, to reduce it to an upper Hessenberg form H
. The reduction is done using a series of Givens transformations. An orthogonal matrix, Q,

is constructed such that Q" AQ = H . If the matrix is not square an error is thrown.

C# example:

Matrix A = new Matrix(7,7):;

Matrix Q = Matrix.Identity(4);

A.HessenbergReduction (Q) ;

8.5.25 HouseholderBidiagonalization(Matrix U ,Matrix V)

If Aisthe m-by-nmatrix, (m>n), this method overwrites Awith B=U"AV , where Bis
upper bi-diagonal matrix, U is an m-by - morthogonal matrix, and V is an n- by - n
orthogonal matrix. A can be recovered by calculating UBV " . Rows and columns are zeroed
using a series of Householder transformations.

C# example:

Matrix A = new Matrix (4, 3);
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Matrix U

Matrix.Identity (4);
Matrix V

Matrix.Identity(3);

A.HouseholderBidiagonalization (U,V);

8.5.26 HouseholderQRDecmposition(Matrix Q ,Matrix R)

Given the mby n matrix A, this method computes an mby m orthogonal matrix Q and an
M by nupper triangular matrix R such that A=QR. Columns are zeroed using
Householder transformations.

C# example:

Matrix A = new Matrix (3, 3);

A[0,0]=1.0;A[0,1]1=2.0;A[0,2]1=3.0;
A[1,0]=2.0;A[1,1]1=1.0;A[1,2]1=5.0;
A[2,0]=6.0;A[2,1]1=5.0;A[2,2]1=1.0;
Matrix U

Matrix.Identity (3);
Matrix V = Matrix.Identity(3);

A.HouseholderQRDecomposition (Q,R) ;
Matrix B = A - Q*R; //should be the zero matrix

8.5.27 void Image()
Let the decomposition of the parent mby nmatrix, A=USV ", into principal (rank 1)

p
components be Y u,o,v/

., where p =min( m,n) . Several plot types are provided:
i=1

e The ‘Contour’, ‘FilledContour’ and ‘XYColorPlot’ options permit the user to view, both

[
the data and the contour plot of ZUiUiViT , Where 1<s<e< p. The colouring is
from smallest (blue) through yellow to highest (red). The colours for any of the plots
are relative to the spectrum for the whole matrix A, with yellow representing the
colour of the contour of the current plotted component which is nearest to the mean
of the values of A. Itis possible to vary the ranges of both axes in order to zoom in
on an area.

e The ‘SingularValues’ option permits the singular values to be plotted. Again the range
and the singular values displayed can be varied by the user. In this case the data
displayed, to the left, is that of the matrix S.

e The ‘SingularVectors’ option permits the singular vectors to be plotted. Again the
range and the singular vectors displayed can be varied by the user. At most 10
legends are displayed to avoid cluttering the graph. In this case the data displayed, to
the left, is that of the matrix V .

It is possible to print the current view, save it in various file formats, and to write the
respective data displayed to a csv file.

C# example:

55




A.Image()

A typical filled contour plot (the ‘FilledContour’ option) is shown in Figure 4.

Contour plot of components 1 to 201
201 8.104
151 / /:;_\\ \\\ 4.441
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2101 [ i - o7
3 >
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Figure 4 - Typical contour plot

8.5.28int Inverse(Matrix inv)
Calculates (in inv) the inverse of a square matrix.

The return value of the function indicates the following:
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Return value Meaning
0 Successful calculation of the inverse.
1 The matrix is non-square - an error is thrown.
2 The numerical method would not converge on a solution
3 The matrix is singular (i.e. an inverse doesn’t exist.

C# example:

int inverse calculated = 0;

inverse calculated = A.Inverse (inv);

8.5.29 Boolean IsBidiagonal()

Returns TRUE if the matrix is upper bidiagonal, to within the tolerance given by
Matrix.ZeroTolerance. Otherwise the function returns FALSE.

8.5.30 Boolean IsHessenberg()

Returns TRUE if the matrix is upper Hessenberg, to within the tolerance given by
Matrix.ZeroTolerance. Otherwise the function returns FALSE.

C# example

if (!S.IsHessenberg())

{
S.HessenbergReduction (Q) ;

}

8.5.31 Boolean IsOrthogonal()

Returns TRUE if the square matrix is orthogonal, to within the tolerance given by
Matrix.zero_tolerance. Otherwise the function returns FALSE.

C# example

if ( (M.ncols !=M.Nrows) || (M.Ncols != Dim) || (M.IsOrthogonal() == false) )
{

throw new System.InvalidOperationException("Invalid coordinate transformation
matrix");

}

8.5.32 Boolean IsZero()

Return true if all entries in the matrix are zero to within the tolerance given by
Matrix.zero_tolerance. Otherwise the function returns false.

8.5.33int Jacobi( Vector b , Vector xo, Vector x)

If Ais the parent matrix this routine uses the Jacobi iterative method to solve the linear
system AX =D, starting with the initial estimate of X0. If the system converges successfully
1 is returned. If the system fails to converge after MaxNumberOfLoops iterations 0 is
returned. If x, is the estimate at the K th step the algorithm is deemed to have converged

when ||Xk —Xk_1|| < ZeroTolerance. If the dimensions of A, b,Xor x0are incompatible or the
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matrix is not square an error is thrown. If the algorithm encounters a pivot element ( Ai’i)
which is zero an error is thrown.

C# example:

Matrix A = new Matrix(4,4);;

Vector b = new Vector (4);

Vector x = new Vector (4);

Vector xo = new Vector (4);

double w = 1.25;

int conv;

A[0,0] = 10.0; A[O,1] = -1.0; A[O0,2] = 2.0; A[O0,3] = 0.0;

A[l, 0] = -1.0; A[1, 1] = 11.0; A[1l, 2] = -1.0; A[1l, 3] = 3.0;
A[2, 0] = 2.0, A[2, 1] = -1.0; A[2, 2] = 10.0;, A[2, 3] = -1.0;
A[3, 0] = 0.0, A[3, 11 = 3.0; A[3, ] = -1.0; A[3, 3] = 8.0;
b[0] = 6.0; b[1l] = 25.0; b[2] = -11.0; b[3] = 15.0;
Matrix.ZeroTolerance = 1.0E-8;

Matrix.MaxNumberOfLoops = 100;

conv = A.Jacobi (b, x0, %) ; //Jacobi method
conv = A.GaussSeidel (b, x0,x); //Gauss-Seidel method
conv = A.SymmetricOverRelaxation (b, xo0,w,x);

8.5.34 void LUDecomposition(Matrix L ,Matrix U ,Matrix P)

Given the mby nparent matrix A, this decomposition calculates an upper diagonal mby n
matrix U , a lower diagonal mby mmatrix L with ones on the main diagonal, and an m by
m permutation matrix P such that PA= LU . The method is successful regardless of the
rank deficiency, or not, of A.

C# example:

Matrix A = new Matrix(4,4);;

Matrix P = Matrix.Identity(4);

Matrix L = Matrix.Identity(4);

Matrix U = new Matrix(4,4);

A[0,0] = 10.0; A[O0,1] = -1.0; A[O0,2] = 2.0; A[Q0,3] = 0.0;

A[l1, 0] = -1.0; A[1, 1] = 11.0; A[1l, 2] = -1.0; A[1, 3] = 3.0;
A[2, 0] = 2.0, A[2, 1] = -1.0; A[2, 2] = 10.0; A[2, 3] = -1.0;
A[3, 0] = 0.0, A[3, 1] = 3.0; A[3, 2] = -1.0; A[3, 3] = 8.0;
Matrix.ZeroTolerance = 1.0E-10;

A.LUDecomposition (L, U, P)
Matrix D = P*A-L*U;
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8.5.35 Matrix Minor(int i,int j)

Returns the matrix which is the minor at the (i, j) station. That is, the matrix whose
elements are those of the original matrix but with the ith row and jth column removed.
C# example:

See the code corresponding to the Determinant function.

8.5.36 Matrix Pdot(Matrix M)

If A is the parent matrix and both A and M have dimensions mby n, then this function returns
the matrix whose (i, j)th element is A; ;M; ;.

8.5.37 QRDecomposition(Matrix Q, matrix R)

Given the mby n matrix A, this method computes an mby m orthogonal matrix Q and an
M by nupper triangular matrix R such that A= QR . Columns are zeroed using a series of
Givens transformations.

C# example:

Matrix A = new Matrix (3, 3);
A[0,0]=1.0;A[0,1]=2.0;A[0,2]=3.0;
A[1,0]=2.0;A[1,1]1=1.0;A[1,2]1=5.0;
A[2,0]=6.0;A[2,1]1=5.0;A[2,2]1=1.0;
Matrix U = Matrix.Identity(3);

Matrix V = Matrix.Identity(3);
A.QRDecomposition (Q,R);
Matrix B = A - Q*R; //should be the zero matrix

8.5.38 Int Rank()

Returns the numerial rank of the matrix. That is the maximum number of linearly
independant rows or columns. Matrix.zero_tolerance is used as the criterion for a singular
value being zero or not in this determination.

C# example:

int p;
p = Math.Min (Nrows,Ncols) ;

Vector sing = new Vector (p):;
int conv = 0;

sing = this.SingularValues (conv) ;

int rank = 0;
for (rank = 0; rank < p; rank++)
{
if (sing[rank] < Matrix.zero tolerance)
{
break;

}
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8.5.39int RealSchurDecomposition(Matrix Q ,Matrix T)

This routine calculates an orthogonal matrix Q and a quasi-triangular matrix T , such that
Q" AQ =T . A matrix is quasi-triangular if its diagonal elements are either 1 by 1 or 2 by 2
matrices. In the latter case, all 2 by 2 diagonal elements have complex eigenvalues.

If the underlying numerical routine has not converged zero is returned, otherwise one is
returned.

The routine used is a QR algorithm employing a Francis QR step. This should converge in
most cases. The convergence criteria is determind by Matrix.ZeroTolerance and the
maximum number of steps in the iteration by Matrix.MaxNumberOfLoops. It may be possible
to allow the routine to converge by increasing one or both of these parameters.

C# example:

Matrix A = new Matrix(5,5);

Matrix Q = Matrix.Identity(5);

A[0,0] = 2.0; A[0,1] = 3.9; A[0,2] = 0.0; A[0,3] = 1.0; A[0,4] = 0.0;
A[1,0] = 1.0; A[1,1] = 4.9; A[1,2] = 0.0; A[1,3] = 3.0; A[1,4] = 0.0;
A[2,0] = 10.0; A[2,1] = 1.0; A[2,2] = 4.0; A[2,3] = 4.0; A[2,4] = 0.0;
A[3,0] = 3.0; A[3,1] = 2.9; A[3,2] = 50.0; A[3,3] = 6.0; A[3,4] = 0.0,
A[4,0] = 2.5; A[4,1] = 4.9; A[4,2] = 0.0; A[4,3] = 8.0; A[4,4] = 7.0;
Matrix T = Matrix.Identity(5);

A.RealSchurDecomposition(Q,T);

8.5.40 RowHouseholder(Vector v)

Given the m-by -nmatrix A and a non-zero m-vector vwith v[0] =1.0 ,this method

WA

\VARY,

computationally efficient manner. If vis not an m-vector an error is thrown.

overwrites Awith PA, where P=1-2 . The calculations are performed in a

8.5.41 SetColumnVector(int i,Vector v)

Sets the ith column of the matrix to have the same elements as the vector v.If iis not a
valid column index or the dimension of vdoes not equal the number of rows of the matrix an
error is thrown.

8.5.42 SetDiagonal(Vector v)

Sets the diagonal entries of a square matrix to be those of the elements of v. The matrix
does not have to be square. If the dimension of vis does not equal the minimum of the
number of rows and columns of the matrix an error is thrown.

8.5.43 SetRowVector(int i,Vector v)

Sets the ith row of the matrix to have the same elements as the vector V.If iis not a valid
row index or the dimension of vdoes not equal the number of columns of the matrix an error
is thrown.
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8.5.44 SetSubMatrix(int i,,int i,,int j,,int j, Matrix A)

Sets the elements spanning rows i, to i,and columns j, to j,to the elements of the matrix

A. j,.Ifi, <ijor j, < j orthe i’sor j’s do not represent valid indices or the dimensions
of A are not compatible an error is thrown.

8.5.45int SingularValues(Vector sValues)

Populates the vector sValues containing the p singular values of the matrix ordered in
descending order of magnitude. Here p = Min(nrows, ncols). If the underlying iteration
converges 1 is returned, otherwise 0 is returned.

8.5.46 Matrix Softmax_normalisation()

For each column m of the parent M this function computes the normalised column m where
exp (m;)

hIy exp(mj)

P =

where 1 < i < n. nis the number of rows of M. This puts every element of the column in the
range [0, 1]. The new matrix M so constructed is returned.

8.5.47 int SymmetricOverRelaxation(Vector b,Vector xo, double w, Vector x)

If Ais the parent matrix this routine uses the SOR iterative method to solve the linear
system AX =D, starting with the initial estimate of X0. If the system converges successfully
1 is returned. If the system fails to converge after MaxNumberOfLoops iterations 0 is
returned. If x, is the estimate at the k th step the algorithm is deemed to have converged

when ||Xk —Xk_1|| < ZeroTolerance. If the dimensions of A, b,Xor xoare incompatible or the

matrix is not square an error is thrown. If the algorithm encounters a pivot element ( Ai’i)
which is zero an error is thrown.

C# example:

See 8.5.33.

8.5.48 Matrix SubMatrix(int i,int i,,int j,,int j,)

Gets the submatrix with rows spanning i;to i,and columns spanning j;to j,.If i, <i,or
J, < J, orthe i’s or j’s do not represent valid indices an error is thrown.

8.5.49int SVD(Matrix U ,Matrix S ,Matrix V)

8.5.50 int JacobiSVD(Matrix U ,Matrix S ,Matrix V)

Given an mby nmatrix , these methods computes an m by m orthogonal matrix U , an nby

northogonal matrix V and an mby ndiagonal matrix S such that A=USV" . The symmetry
of the decomposition means that both the cases m > n, and m < nare handled by one
routine. If the SVD algorithm converges this function returns 1; otherwise it returns 0.

The diagonal elements of S contain the singular values in descending order of magnitude.
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The first min(m, n) columns of U contain the corresponding left singular vectors, u;, and
the first min(m, n) columns of V contain the corresponding right singular vectors, v, , where
Av, = o,u; L<i<min(m,n)).If m>>nor n<<m, and all the left and right singular

vectors are not required and workspace memory is at a premium, it is recommended that the
algorithm SVDLight is used instead.

The number of iterations that will be performed in an attempt to converge on the solution is
governed by MaxNumberOfLoops. The threshold for a number being zero is given by
ZeroTolerance. If the algorithm does not converge you can always try to ensure a
convergence by increasing MaxNumberOfLoops or ZeroTolerance or both.

Jacobi_SVD uses a series of Jacobi transformations to successively zero off-diagonal
elements. SVD uses a Golub-Kahan step to reduce the magnitude of off diagonal elements
of a bidiagonal matrix. Jacobi_SVD takes many more iterations to zero all off diagonal
elements but the amount of computation done at any one iteration is smaller than that of
SVD.

C# example:
int converged = 0;
Matrix S = new Matrix (A);

Matrix U = Matrix.Identity(A.nrows);
Matrix V

Matrix.Identity (A.ncols);
converged = A.SVD(U,S,V);
//converged = A.JacobiSVD(U,S,V);

Matrix B = A — U*S*V.Transpose(); //should be the zero matrix

8.5.51int SVDLight(Matrix U ,Matrix S ,Matrix V)

Let the parent Abe an mby nmatrix. If m > n, this method computes an mby nmatrix U
whose columns are orthogonal, and nby northogonal matrix V and an nby ndiagonal
matrix S . If m<n, this method computes an m by morthogonal matrix U , an nby m
matrix V whose columns are orthogonal and an mby mdiagonal matrix S . In both cases
A=USV'.

If the SVD algorithm converges this function returns 1; otherwise it returns O.

The diagonal elements of S contain the singular values in descending order of magnitude.
The first columns of U contain the corresponding left singular vectors, u,, and the columns
of V contain the corresponding right singular vectors, v, , where Av, = o,u;

(@ <i<min( m,n)).

The number of iterations that will be performed in an attempt to converge on the solution is
governed by MaxNumberOfLoops. The threshold for a number being zero is given by
ZeroTolerance. If the algorithm does not converge you can always try to ensure a
convergence by increasing MaxNumberOfLoops or ZeroTolerance or both.

C# example:

int converged = 0;

Matrix S = new Matrix.Identity(A.Ncols);
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Matrix U

new Matrix (A.nrows,A.Ncols);

Matrix V

Matrix.Identity (A.Ncols);
converged = A.SVDLight (U,S,V);

Matrix B = A — U*S*V.Transpose(); //should be the zero matrix

8.5.52 SVDSolve(Vector b, ref int conv)

Given the mby nmatrix A and the mvector b, this method solves (in a least squares sense)
for the nvector X ,where AX=Db. Thatis, X minimizes ||AX—b|| and has the smallest norm of
all minimizers. convindicates if the underlying SVD routine converged (convset to 1) or not

(0).

int converged = 0;

Vector x = A.SVDSolve (b, ref converged);

8.5.53 Matrix Transpose()
Returns the transpose of the matrix.
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9 ComplexMatrix class

9.1 Constructors

9.1.1 ComplexMatrix()

The default constructor initialises a 3-by-3 matrix, of complex humbers, each element of
which is zero. Rows are represented by the first index and columns by the second index.
Both indices are zero based.

C# example:

ComplexMatrix A = new ComplexMatrix();

9.1.2 ComplexMatrix(int m,int n)

This constructor initialises an mby nmatrix, of complex numbers, each element of which is
Zero.

C# example:

ComplexMatrix A = new ComplexMatrix(3,4);

9.1.3 ComplexMatrix(ComplexMatrix A)

This constructor initialises a matrix with the same number of rows and columns as A. The
elements of the matrix are the same as those of A.

C# example:

ComplexMatrix A = new ComplexMatrix(2,3);

ComplexMatrix B = new ComplexMatrix (A);

9.2 Properties

9.2.1 Diagonal

Returns the vector containing the diagonal entries of the matrix. The matrix does not have to
be square.

9.2.2 int Nrows
A read only property giving the number of rows of the matrix.

C# example:

int m;

m = A.Nrows;

9.2.3 Ncols
A read only property giving the number of columns of the matrix.

C# example:
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int n;

n A.Ncols;

9.24 [i,]j]
Gets and sets the [i, j] th element of the matrix.

C# example:

Complex a,b;

a = new Complex(1.5,0.5);
Al[2,3] = a;

b = new Complex (A[1l,2]);

9.2.5 Matrix Real

Returns the matrix whose elements are the real part of the corresponding elements of the
parent.

C# example:
Matrix real part = new Matrix(A.nrows,A.ncols);
Matrix imag part = new matrix(A.nrows,A.ncols);

real part A.Real;

imag part = A.Imaginary;

9.2.6 Matrix Imaginary

Returns the matrix whose elements are the imaginary part of the corresponding elements of
the parent.

C# example:
See 9.2.5.

9.3 Static Methods

9.3.1 CalculateGivensParameters(Complex a,Complex b,Complex ref ¢
,Complex ref s)

Given complex scalars a and b this function computes cand S such that:

c S)(a r
( ) (b} = (O] for some complex scalar r . Here § denotes the conjugate ofS. S and
-S C

care related by ¢’ +|S| =1, and cis real.
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9.4 Overloaded operators

9.4.1 + operator
If Ajand A, are real or complex matrices this operator permits A + A, to return a complex
matrix. If A and A,are not of the same dimension an error is thrown.

C# example:

ComplexMatrix A = Al + Al;

9.4.2 Add(ComplexMatrix A)

Adds matrix Ato the parent. A may be real or complex. To be used in languages which do
not permit + to be overridden.

9.4.3 - operator
If Ajand A, are real or complex matrices this operator permits A — A, to return a complex
matrix. If A and A,are not of the same dimension an error is thrown.

C# example:

ComplexMatrix A = Al - A2;

9.4.4 Subtract(ComplexMatrix A)

Subtracts A from the parent. A may be real or complex. To be used in languages which do
not permit - to be overridden.

9.4.5 *operator
e If Ais acomplex matrix and A is a scalar this operator permits both A* Aand A* A
to return a matrix. The multiplication of the matrix by the scalar is component-wise.
e If Ajand A,are two complex matrices of compatible dimensions for matrix
multiplication this operator permits A * A, to return a complex matrix. If the
dimensions are not compatible an error is thrown.

e If Ais a complex matrix and Vva vector this operator permits A*Vto return a complex
vector. If Aand vare not of compatible dimensions an error is thrown.

C# example:

ComplexMatrix A = ComplexMatrix.Identity();
ComplexMatrix B = (lambdal * A) * lambdaZz;
ComplexMatrix C = A*B;

ComplexVector v = new ComplexVector (3);
V[0]=1.0; v[1l] = 2.0;

ComplexVector w = A*v;
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9.4.6 Multiply(double d)

Multiplies the parent by d . d may be real or complex. To be used in languages which do not
permit * to be overridden.

9.4.7 Multiply(ComplexMatrix A)

Permits the parent to be multiplied by A. A may be real or complex. To be used in
languages which do not permit * to be overridden.

9.4.8 Multiply(ComplexVector v)

Permits matrix vector multiplication of the parent. v may be real or complex. To be used in
languages which do not permit * to be overridden.

9.4.9 operator/

If Ais acomplex matrix and A a scalar this operation returns A/ Ain a component-wise
manner. If Ais zero an error is thrown.

C# example:

ComplexMatrix A = (B/2.5);

9.4.10 Divide(double d)

Divides the parent by d .d can be real or complex. To be used in languages which do not
permit / to be overridden.

9.4.11 operator ==

Returns true if two classes are identical i.e. they refer to the same instance, or two instances
are element-wise identical. Otherwise returns false.

9.4.12 operator !=

Returns false if two classes are identical i.e. they refer to the same instance, or two
instances are element-wise identical. Otherwise returns true.

9.5 Methods

9.5.1 Assign
If Ajand A, are two complex matrices of the same dimensions this is the C# way of

performing the assignment A, = A,. If Ajand A, are not of the same dimensions an error is
thrown.

C# example:

Al.Assign (A2);
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9.5.2 Bidiagonalization(ComplexMatrix U ,Complexmatrix V)
If Aisthe m-by-nparent matrix, (m>n), this method overwrites Awith B=U"AV ,
where B is upper bi-diagonal, U is an m-by - munitary matrix, and V is an n- by - nunitary

matrix. A can be recovered by calculating UBV " . Rows and columns are zeroed using a
series of Givens transformations.

C# example:

ComplexMatrix A new ComplexMatrix(4,3);

ComplexMatrix U ComplexMatrix.Identity(4);

ComplexMatrix V = ComplexMatrix.Identity(3);

A.Bidiagonalization (U,V);

9.5.3 ColumnHouseholder(Vector v)

Given the m-by - nmatrix complex A and a non-zero n-vector vVwith v[0] =1.0 ,this method

vvH

viv

computationally efficient manner. If vis not an n-vector an error is thrown.

overwrites Awith AP, where P=1-2

. The calculations are performed in a

9.5.4 ComplexMatrix ConjugateTranspose()
Returns the conjugate transpose of the matrix.

9.5.5 double Determinant(ref int converged )

Calculates the determinant of a square matrix directly. If the matrix is non-square an error is
thrown. If the underlying numerical routine has converged converged is set to 1. Otherwise it

is set to zero.

C# example:

int conv = 1;

double det A.Determinant (ref conv);

9.5.6 void Edit()

This method displays a dialogue which permits the elements of the matrix to be changed by
the user. To change a cell: select it, type in the new value and click elsewhere so the focus
of the cell is lost. Press the update button to commit the changes to the matrix. Press the
cancel button to quit the form without committing any changes. Rows or columns of the
matrix are plotted individually. It is possible to choose either the real, imaginary or magnitude
of each element, to be plotted.

C# example:

ComplexMatrix A = new ComplexMatrix(4,4);
A.Edit ()
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9.5.7 int Eigenvalues(ComplexVector E)

If Aisthe nby n parent matrix this routine calculates the n complex numbers, A, which
together with nvectors, Vv ,satisfy the equation Av = Av .The eigenvalues A are returned as a
complex vector E . The eigenvalues are sorted in terms of magnitude with the largest first. If
the underlying numerical routine used has not converged zero isn returned, otherwise one is
returned. The routine used is a QR algorithm employing a double shift. This should converge
in most cases. The convergence criteria is determind by Matrix.ZeroTolerance and the
maximum number of steps in the iteration by Matrix.MaxNumberOfLoops. It may be possible
to allow the routine to converge by increasing one or both of these parameters.

If the matrix is not square an error is thrown.

C# example:

ComplexVector E = new ComplexVector(7);
int Eig returnl = 1;

Eig returnl = A.Eigenvalues(E);

9.5.8 int Eigenvectors(ComplexVector Eval , ComplexMatrix Evec)

If Aiisthe nby nparent matrix this routine calculates the nEigenvalues, A, which together
with the nEigenvectors Vv, satisy the equation Av = Av. The Eigenvalues are returned as a
complex vector in Eval. The corresponding Eigenvectors are returned as columns of the

complex matrix Evec The Eigenvectors and their corresponding Eigenvalues are sorted in
order of magnitude, with the largest first. If the underlying numerical routine has not
converged zero is returned, otherwise one is returned.

The routine used is a QR algorithm employing a double shift. This should converge in most
cases. The convergence criteria is determind by Matrix.ZeroTolerance and the maximum
number of steps in the iteration by Matrix.MaxNumberOfLoops. It may be possible to allow
the routine to converge by increasing one or both of these parameters.

If the matrix is not square an error is thrown.
C# example:

Eig return = A.Eigenvectors(E,P);
if (Eig return == 1)
{

for (1 = 0; 1 < n; i++)

{

ComplexVector diff = new ComplexVector (n);

diff = E[1] * P.GetColumnVector (i) - A *
P.GetColumnVector (i) ;
if (diff.Modulus > (((double)n)*1.0E-8))

{
MessageBox.Show ("Complex Eigenvector routine has
failed");
return;

}
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9.5.9 ComplexMatrix Eigenvectors2(ComplexMatrix Q ,ComplexMatrix T)
Ais the nby nparent matrix and Q is a unitary matrix an T an upper triangular matrix such

that Q" AQ =T . Then this routine computes the eigenvectors of A as the return matrix. The
i th column of the return matrix corresponds to the ith eigenvalue on the diagonal of T .

9.5.10 Complex Eigenvector(ComplexVector Eval,ComplexVector initial , ref int
conv)

Use this routine when it is known that the matrix has a single dominant eigenvalue i.e.

|4 >4, 2 4; = ... 2] 4, | . In this case the routine will converge to A, (the return value) and

the associated dominant eigenvector ( Eval). The initial guess to the dominant eigenvector
must have a component in the direction of the dominant eigenvector. The routine employs
the power method algorithm. This routine is much less computational intensive than the ones
for returning all the eigenvector/values, and should be used when some information is known
about the matrix.

9.5.11 ComplexVector GetColumnVector(int i)

Return the ith column of the matrix as a vector. If iis less than zero or greater or equal to
the number of columns then an error is thrown.

9.5.12 ComplexVector GetRowVector(int i)

Returns the ith row of the matrix as a vector. If iis less than zero or greater or equal to the
number of rows then an error is thrown.

9.5.13 GivensPostMultiplication(int i,int k,Complex ¢,Complex s)

Let G(i,k,c,s)be the Givens matrix, where ¢ and S are calculated according to 9.3.1. This
G(,k,c,s)(i,i)=c

. . _ G(ik,c,s)(k,k)=c

is the identity except that _ . _
G(i,k,c,s)(i,k) =5

G(i,k,c,s)(k,i) =-s

The Givens post multiplication of a matrix Areplaces Awith AG(i,Kk,c,s).

9.5.14 GivensPreMultiplication(int i,int k,Complex ¢c,Complex s)

Let G(i,k,c,s) be the Givens matrix, where ¢ and S are calculated according to 9.3.1. This
G(i,k,c,s)(i,i)=c

_ _ _ G(ik,c,s)(k,k)=c

is the identity except that _ . B
G(i,k,c,s)(i,k) =5

G(i,k,c,s)(k,i) =-s
The Givens pre multiplication of a matrix Areplaces Awith G(i,k,c,s)" A.

9.5.15void HessenbergReduction()

The parent is operated upon to reduce it to an upper Hessenberg form i.e. zeros on all
elements below the sub-diagonal. The reduction is done using a series of Givens
transformations. If the matrix is not square an error is thrown.
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9.5.16 void HessenbergReduction(ComplexMatrix Q)

This method operates on the parent matrix, A, to reduce it to an upper Hessenberg form H
. The reduction is done using a series of Givens transformations. A unitary matrix, Q, is

constructed such that Q" AQ = H . If the matrix is not square an error is thrown.

C# example:

ComplexMatrix A new ComplexMatrix(7,7):;

ComplexMatrix Q = ComplexMatrix.Identity(4);
A.HessenbergReduction (Q) ;

9.5.17 HouseholderBidiagonalization(ComplexMatrix U ,ComplexMatrix V)

If Aisthe m-by-nmatrix, (m>n), this method overwrites Awith B=U " AV , where Bis
upper bi-diagonal, U is an m-by - munitary matrix, and V is an n- by - nunitary matrix.
Here the ‘H ’* subscript will be used to denote conjugate transpose. A can be recovered by

calculating UBV " . Rows and columns are zeroed using a series of Householder
transformations.

C# example:

ComplexMatrix A new ComplexMatrix (4, 3);

ComplexMatrix U = ComplexMatrix.Identity(4);

ComplexMatrix V = ComplexMatrix.Identity(3);

A.HouseholderBidiagonalization (U,V);

9.5.18 HouseholderQRDecmposition(ComplexMatrix Q ,ComplexMatrix R)

Given the mby n complex matrix A, this method computes an mby m orthogonal matrix
Q and an m by nupper triangular matrix R such that A=QR. Columns are zeroed using
Householder transformations.

C# example:

ComplexMatrix A = new ComplexMatrix(3,3):;

A[0,0]=new Complex(1.0,0.0);A[0,1]=new Complex(2.0,0.0);A[0,2]=new
Complex(3.0,0.0);

A[1l,0]=new Complex(2.0,0.0);A[l,1]=new Complex(3.0,0.0);A[1l,2]=new
Complex (5.0,1.0);

A[2,0]=new Complex(6.0,1.0);A[2,1]=new Complex(5.0,0.0);A[2,2]=new
Complex(1.0,1.0);

ComplexMatrix Q = ComplexMatrix.Identity(3);
ComplexMatrix Q = ComplexMatrix.Identity(3);
A.HouseholderQRDecomposition (Q,R) ;

ComplexMatrix B = A — Q*R; //should be the zero matrix
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9.5.19int Inverse(ComplexMatrix inv)
Calculates (in inv) the inverse of a square matrix.

The return value of the function indicates the following:

Return value Meaning
0 Successful calculation of the inverse.
1 The matrix is non-square - an error is thrown.
2 The numerical method would not converge on a solution
3 The matrix is singular (i.e. an inverse doesn’t exist.

C# example:

int inverse calculated = 0;

inverse calculated = A.Inverse (inv);

9.5.20 Boolean IsBidiagonal()

Returns TRUE if the matrix is upper bidiagonal, to within the tolerance given by
Matrix.ZeroTolerance. Otherwise the function returns FALSE.

9.5.21 Boolean IsHessenberg()
Returns TRUE if the matrix is upper hessenberg, to with the tolerance given by

Matrix.ZeroTolerance. Otherwise the function returns FALSE.

9.5.22 Boolean IsUnitary()

Returns TRUE if the square matrix is unitary, to within the tolerance given by
Matrix.zero_tolerance. Otherwise the function returns FALSE.

9.5.23 Boolean IsZero()
Return true if all entries in the matrix are zero to within the tolerance given by

Matrix.zero_tolerance. Otherwise the function returns false.

9.5.24 ComplexMatrix Minor(int i,int j)

Returns the matrix which is the minor at the (i, j) station. That is, the matrix whose
elements are those of the original matrix but with the ith row and jth column removed.
C# example:

See the code corresponding to the Determinant function.

9.5.25 RealBidiagonalization(ComplexMatrix U, ComplexMatrix V)

If Aisthe m-by-nparent matrix, (m>n), this method overwrites Awith B=U" AV |
where B is a real and upper bi-diagonal, U is an m-by - munitary matrix, and V is an n- by

- Nunitary matrix. A can be recovered by calculating UBV " . Rows and columns are
zeroed, and transformed to real, using a series of orthogonal transformations.

C# example:
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ComplexMatrix A new ComplexMatrix(4,3);
ComplexMatrix U = ComplexMatrix.Identity(4);
ComplexMatrix V = ComplexMatrix.Identity(3);
A.RealBidiagonalization (U,V);

9.5.26 Int Rank()

Returns the numerial rank of the matrix. That is the maximum number of linearly
independant rows or columns. Matrix.zero_tolerance is used as the criterion for a singular
value being zero or not in this determination.

C# example:

int p;
p = Math.Min (nrows,ncols);

Vector sing = new Vector(p):
int conv = 0;

conv = this.SingularValues (sing);

int rank = 0;
for (rank = 0; rank < p; rank++)
{
if (sing[rank] < Matrix.zero tolerance)
{
break;

}

9.5.27 RowHouseholder(Vector v)

Given the m-by -ncomplex matrix A and a non-zero m-vector Vwith v[0] =1.0 ,this method

vvH

vy

computationally efficient manner. If vis not an m-vector an error is thrown.

overwrites Awith PA, where P=1-2 . The calculations are performed in a

9.5.28 int SchurDecomposition(ComplexMatrix Q, ComplexMatrix T)
This routine calculates a unitary matrix Q and an upper triangular matrix T , such that

Q"AQ=T.

If the underlying numerical routine has not converged zero is returned, otherwise one is
returned.

The routine used is a QR algorithm employing a double shift. This should converge in most
cases. The convergence criteria is determind by Matrix.ZeroTolerance and the maximum
number of steps in the iteration by Matrix.MaxNumberOfLoops. It may be possible to allow
the routine to converge by increasing one or both of these parameters.
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9.5.29 SetColumnVector(int i,Vector v)

Sets the ith column of the matrix to have the same elements as the vector v.If iis not a
valid column index or the dimension of vdoes not equal the number of rows of the matrix an
error is thrown.

9.5.30 SetDiagonal(ComplexVector v)

Sets the diagonal entries of a square matrix to be those of the elements of v. The matrix
does not have to be square. If the dimension of vis does not equal the minimum of the
number of rows and columns of the matrix an error is thrown.

9.5.31 SetRowVector(int i ,ComplexVector v)

Sets the ith row of the matrix to have the same elements as the vector Vv .If iis not a valid
row index or the dimension of vdoes not equal the number of columns of the matrix an error
is thrown.

9.5.32 SetSubMatrix(int i,,int i,,int j;,int j, ,ComplexMatrix A)

Sets the elements spanning rows i, to i,and columns j, to j,to the elements of the matrix

A. j,.If i, <ijor j, <], orthe i’sor j’s do not represent valid indices or the dimensions
of A are not compatible an error is thrown.

9.5.33int SingularValues(Vector sValues)
Populates the vector sValues containing the p singular values of the matrix ordered in
descending order of magnitude. Here p = Min(nrows, ncols). If the underlying iteration
converges 1 is returned, otherwise 0 is returned.

9.5.34 ComplexMatrix SubMatrix(int i,int i,,int j,,int j,)

Gets the submatrix with rows spanning i,to i, and columns spanning j;to j,. If i, <i,or
J, < J, orthe i’s or j’s do not represent valid indices an error is thrown.

9.5.35int SVD(ComplexMatrix U ,ComplexMatrix S,ComplexMatrix V)

Given an mby ncomplex matrix , this method computes an m by munitary matrix U , an n
by nunitary matrix V and an mby ndiagonal matrix S such that A=USV" . The symmetry
of the decomposition means that both the cases m > n, and m < nare handled by one
routine. If the SVD algorithm converges this function returns 1; otherwise it returns O.

The diagonal elements of S contain the singular values in descending order of magnitude.
The number of iterations that will be performed in an attempt to converge on the solution is
governed by MaxNumberOfLoops. The threshold for a number being zero is given by
ZeroTolerance. If the algorithm does not converge you can always try to ensure a
convergence by increasing MaxNumberOfLoops or ZeroTolerance or both.

C# example:

int converged = 0;

ComplexMatrix new ComplexMatrix(A);

S
ComplexMatrix U ComplexMatrix.Identity (A.nrows);
\Y

ComplexMatrix = ComplexMatrix.Identity (A.ncols);

converged = A.SVD(U,S,V);
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ComplexMatrix B = A — U*S*V.ConjugateTranspose(); //should be the
zero matrix

9.5.36 SVDSolve(ComplexVector b, ref int conv)

Given the mby nmatrix A and the mvector b, this method solves (in a least squares sense)
for the nvector X ,where AX=Db. Thatis, X minimizes ||AX—b|| and has the smallest norm of
all minimizers. convindicates if the underlying SVD routine converged (convset to 1) or not

(0).

int converged = 0;

ComplexVector x = A.SVDSolve (b, ref converged);

9.5.37 ComplexMatrix Transpose()
Returns the transpose of the matrix.
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10 Neural Network class

The methods and properties in this class are aimed at solving those classes of problems that
can broadly be classed as categorisation. The typical problem will have two matrices of data
associated with it. Firstly an input matrix , each of whose columns contain data describing
the features of an object. Each element of the rows is the data of a feature. For example the
objects might be people’s faces (taking with your camera) and one particular feature could
be the distance between the two pupils. Another feature could be an integer representing the
eye colour etc. Secondly a target matrix T, each of whose columns represents the category
of object that the data of the corresponding column of the input matrix belongs to. The
column will have as many elements as there are categories and will be all zeroes with the
exception of a one at the location of the category to which the data is associated. For
example the data may represent the faces of pupils in a school and the categories are the
classes the pupils belong to. The job of the neural network is to provide a system, which
given the features of an unknown object, will permit this object to be categorised into one of
a finite number of categories. The mathematical way in which it does this is described next.

Let s be the number of features, n the number of categories and N the number of elements
in the data set. Then the neural network finds a weight matrix W, such that:

1
FW) =5 IlFwD = T2

Equation 1

is minimised. Here f is the activation function (described later). Normally this is the softmax
transfer function whose job is to normalise the columns of W1, such that all elements are
between 0 and 1 and hence are more comparable to the columns of T. The minimisation is
essentially a least square one summing over all N columns of f(WI) — T.W isannby s

matrix. That is if e; is the ith column of f(WI) — T, F(W) = %minw >N ele.

The technique used is a conjugate gradient like one where W is incrementally calculated
from an initial estimation W, where at the kth step we have, essentially:

Wi = Wy—1 + pdy

Equation 2
dy = —VF(W) + Bdy_4
Equation 3
Here VF (W) is an n by s matrix whose i, j th element is %, B is a scalar. Possible values
)

for g are given by 10.1.5 and 10.1.6. VF(W) can be computed analytically. u is a scaling
factor (the distance we move along d;) whose value is computed to minimise F(W,,) at the
kth step.

This process is referred to as training the network. Once trained and given an input vector p
not present in the training data set, the category this object belongs to can be estimated by
selecting the one corresponding to the index of the maximal element in f(Wp).

You should use a neural network technique like this when:

e An analytic technique is not available.

e You have a large enough data set.

e You do not mind that the wrong category may sometimes be allocated after training,
for a different input vector.

A typical example of the use of the methods and properties of this class is:
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NeuralNetwork net = new NeuralNetwork();

net.inputs = Data I.Transpose();
net.targets = Data T.Transpose();
net.maxNumberOfExperiments = 10000;
net.mu = 0.005;
net.gradientTolerance = 1.0E-7;
net.fixedStepsize = false;
net.showGraphic = true;

net.addBias = true;

net.train();
Graph gr = new Graph();

Matrix a = net.weights * net.inputs;
Matrix a_ = a.Softmax_normalisation();
Matrix error = net.targets - a;

int N = net.targets.Ncols;

double mod = 90.0;

Vector ind = new Vector(N);

Vector errorV = new Vector(N);

for (int i = @; 1 < N; i++)

{
ind[i] = i;
mod = error.GetColumnVector(i).Modulus;
errorV[i] = mod * mod / N;

}

gr.Plot(ind, errorV);
Matrix TbarT = a .Transpose();

double success = 0.0;

for (int 1 = 0; 1 < N; i++)

{
int locl = 0, loc2 = 0;
ThbarT.GetRowVector (i) .MaxL (ref locl);
Data T.GetRowVector (1) .MaxL (ref loc2);

if (locl == loc2)
{
success = success + 1.0;
}
}
MessageBox.Show ("Success rate is:" + (100.0 * success /

N) .ToString () + "%");

The inputs and targets are added. The parameters of training are set and the network is then
trained to find the weights. Then in this example the original data is used to reconstruct the
targets which are compared with the original ones. Finally the success rate is displayed.

10.1Properties

10.1.1 Boolean addBias

When set to true this instructs the algorithm to use a bias vector (see property bias), with the
train method. The default is false.
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10.1.2 Boolean addBias1, addBias?2

When set to true these instruct the algorithm to use a bias vector (see property biasl, bias2),
with the trainHL method, associated with weights W, and W,respectively. Each bias can be
set independently. The default for each is false.

10.1.3 Boolean accelerateConvergence

When set to false a more conservative method for updating the weights is used at each
iteration. This may mean the training algorithm may take much longer to converge but it may
also mean that ultimately weights with a greater predictive categorisation capacity are
obtained. The default is true and should produce very good results in most cases.

10.1.4int activationFunction
This specifies the function f in Equation 1.

0 (default) - softmax transfer function.

1 - linear transfer function (the identity).

10.1.5double beta
The value g in Equation 3, as provided by the user. The default value is 0.9.

10.1.6 int betaType

This allows specification of the way that # in Equation 3 is calculated. Various options are
available and each one’s performance will vary depending upon the valuesin I and T.

0 (the default), due to Hestenes - Steifel:

_ Y9rAgr
B diAgi
Equation 4
1, due to Fletcher-Reeves:
_ Y9k-Yk
ﬂ Ik-1-9k-1

Equation 5
2, 8 as provided by the user according to property 10.1.5.

3, due to Polak-Ribiere:
_ 9khgk
ﬂ - Ik-1-9k-1
Equation 6

In these expressions g, is the gradient at the kth iteration and Agy, = gx — gx—1- The "’ Is
the dot product of the two vectors.

10.1.7 Vector bias
This is a single n dimensional vector b, such that if for each i , &; = f(Wp;) — b (p; is the ith
column of I) then we find a matrix W that minimizes F(W) = %Z’i"ﬂ ele;. Let I be the matrix

of dimension s + 1 by N whose first s rows are filled with the elements of I , and whose last
row contains all -1’s. Let W be the n by s + 1 matrix whose first s columns are filled with the
elements of W and whose last column is filled with the elements of b. Then W and I are
sometimes termed the augmented matrices. They have the property that when the term
f(Wp;) is evaluated (p; is the ith column of I) the index of the maximum value corresponds
to the category (if successful) corresponding to the features. The beauty is that all algebraic
expressions are analogous for this approach and the approach without a bias vector. The
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bias can be got but not set. When using a bias is selected the properties inputs and weights
return the corresponding augmented matrices.

Experience suggests that using a bias can often slightly improve the reliability of the neural
method.

10.1.8 Vector bias1, bias2

These are single n dimensional vectors b, and b,, such that if for each i, e; = f(W,t(W;p; —
b;) — b,) (p; is the ith column of I) then we find matrices W; and W,that minimize

F(W,, W) = %Z’i":l ele;. Let I be the matrix of dimension s + 1 by N whose first s rows are
filled with the elements of I , and whose last row contains all -1’s. Let h be the size of the
hidden layer. Let W, be the h by s + 1 matrix whose first s columns are filled with the
elements of W, and whose last column is filled with the elements of b,. Let W, be the n by
h + 1 matrix whose first h columns are filled with the elements of W, and whose last column
is filled with the elements of b,. W,and W,and I are sometimes termed the augmented
matrices, as before. They have the property that when the term, f(WZT(Wlﬁl —by) — bz) is
evaluated the index of the maximum value corresponds to the category (if successful)

corresponding to the features. Here ©(W,p, — b,) is another augmented input. As with the
single weight case all algebraic expressions are analogous to the approach without bias
vector(s). A coding fragment as to how to use these matrices is given in 10.2.11.

10.1.9 conjugateGradientRestart

When set to true the search direction dy, is reset to —VF (W) if certain conditions are met.
The default is true.

10.1.10 Boolean fixedStepsize

A Boolean whose value determines whether u can be varied at each step. The default is true
and if false is selected a fixed step is employed (this is as provided by the user or else
default to 0.005). A fixed step size is not possible with the trainHL method.

10.1.11 double gamma

This property allows the user to set a constant value for y in Equation 7. The default value
when specification via this property is selected, is 0.9.

10.1.12 int gammaType

If conjugateGradientRestart is set to true, then if the gradient’s modulos has not decreased
sufficiently, at an iteration, the algorithm is restarted by setting the search direction dj, to
—gx- Then, if t is the iteration at which the restart occurs, then forall k > t + 1,

dx = —gi + Bdy-1 +vd,
Equation 7
This approach is due to Beale and Powell.

This property provides various options for calculating y. The options are analogous to those
for calculating g (see 10.1.6). It is not necessary to use the same option as that of 8, but this
is usually what is done.

0 (the default) -

— 9kAGess
9e-AGrv1
Equation 8
1- y = gt+1-9t+1
gt gt
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Equation 9

2 - y is set to a value as provided by the user, according to property 10.1.11.

A
3- — IkBgt+1
9t-gt

Equation 10

10.1.13 double gradientTolerance

If g;is a row of VF(W) , where W is a weight matrix, the iteration of the training terminates if

* . g:"g; falls below gradientTolerance. Note that where the iteration should be converging
to a local minima, we are expecting VF (W) to tend to the zero matrix. However it will not
necessarily be zero unless an analytic solution exists which is unlikely, or otherwise a neural
network technigue should not be employed. Hence this test is a natural one. And in any
case, when it is true, then we are not updating the guess for W any longer, anyway.

10.1.14 int initialGuess

This allows the user to control the way the weights are initialised at the start of the training
algorithm. Experience shows that the initial guess has a marked effect upon the
convergence of the algorithm and even upon the value converged to, although in all cases a
value which gives a low value to the performance function will be obtained. Also, in all cases
the training will be deterministic and repeatable - i.e. the results of the training depend only
upon the inputs, targets and the parameters of the method such as the initial guess.

It is possible to select two methods for finding the initial weights:

0 - use a very simple method in which the leading diagonal of the weight(s) matrices are set
to 1.0, all other elements being zero.

1 - use a method based upon the SVD.

10.1.15 Matrix inputs
The matrix I as provided by the user.

10.1.16 double maxmu

The maximum value that ¢ can reach during the minimisation. Defaults to 1.0E07. If this
figure is attained the algorithm stops. Sometimes the success of training can be improved by
increasing this parameter to allow greater swings in u during the optimisation process that
occurs to establish the value of u at each iteration.

10.1.17 int maxNumberOfExperiments

The maximum number of iterations of the conjugate gradient like step that are permitted.
Defaults to 1000.

10.1.18 Boolean normaliselnputs

Setting this property to true normalises the inputs according to 10.2.2 and 10.2.6. An
example of when this might be used is when N pairs (x, y)are provided and we are trying to
find the elements of the fixed matrix which relates x and y according to y = Ax. In this case
we set the activation function to linear (0), and normaliselnputs to false. The default value of
this property is true.

A synthetic example of how this property can be used to find the matrix A, mentioned in the
above paragraph is:

int noFeatures = 6;
int noCategories = 12;
int noElements = 1000;
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Matrix weights = new Matrix(noCategories, noFeatures);
Matrix inputs = new Matrix(noFeatures, noElements);
Matrix targets = new Matrix(noCategories, noElements);

//Set the weights matrix
Random rnd = new Random();
for (int i = @; i < weights.Nrows; i++)

{
for (int j = 0; j < weights.Ncols; j++)
{
weights[i, j] = rnd.NextDouble();
}
}

//Set the inputs and generate the targets
for (int i = @; 1 < noElements; i++)

{
Vector x = new Vector(noFeatures);
for (int j = ©; j < x.Dim; j++)
{

x[j] = rnd.NextDouble();
inputs.SetColumnVector(i, x);
targets.SetColumnVector(i, weights * x);

}

//Now, recalculate the weights using a neural network technique.
NeuralNetwork net = new NeuralNetwork();
net.inputs = inputs;

net.targets = targets;
net.maxNumberOfExperiments = 1000;
net.mu = 0.005;

net.minmu = 1.0E-10;

net.maxmu = 1000.0;
net.performanceTolerance = 1.0e-8;
net.gradientTolerance = 1.0E-9;
net.fixedStepsize = false;
net.showGraphic = true;

net.addBias = false;
net.accelerateConvergence = true;
net.initialGuess = 9;
net.activationFunction = 0;
net.steepestDescentOnly = true;
net.conjugateGradientRestart = false;
net.normaliseInputs = false;
net.train();

MessageBox.Show("Number of experiments, mu is:

+ "," + net.mu.ToString());

+ net.numberOfExperiments.ToString()

//compare with the original ones
(net.weights - weights).Edit();

10.1.19 int numberOfFeatures
The number of rows in the inputs matrix.
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10.1.20 int minmu

The minimum value that u can reach during the minimisation. Defaults to 0.00001. If this
figure is attained the algorithm stops. Sometimes the success of the training process can be
increased by reducing this parameter, as it tends to increase the number of iterations
permitted.

10.1.21 double mu
The initial step size u. Defaults to 0.005.

10.1.22 int numberOfFeatures
The number , s, of rows in I. This is the number of features in the data.

10.1.23 Int numberOfTargets
The number, , of rows in T. This is the number of categories.

10.1.24  Vector inputScale, Vector inputGain, double inputYmin, double input
Ymax

Prior to training each row k of the input matrix I, is normalised by resetting I[k, i] equal to
(I[k,i] — inputScale[k]) * inputGain[k] + inputYmin

Here inputScale[k] is the minimum of the elements of the kth row of 1. inputYminis as
provided by the user but defaults to -1 (it is recommended to use this value). inputYmax is
as provided by the user but defaults to 1 (it is recommended to use this value).

inputYmax — inputYmin

inputGainlk] =
P L] max element row k — min element row k

That is we are normalising the rows of I to be in the range [inputYmin, inputYmax] i.e.
usually [-1,1].

10.1.25 double performance
For a given W or (W;, W,) pair this is the value of F(W) or F(W,,W,) respectively.

10.1.26 double performanceTolerance
When F(W)is below this level the training algorithm ends. The default is 0.0001.

10.1.27 Boolean showGraphic

If set to true (the default) a graphic is displayed during training that enables you to see the
progression of VF(W) or V. F(W;,W,) and V,F(W,,W,) respectively. The modulus of the
rows are ploted in each case.

10.1.28 int sizeOfHiddenLayer

This allows the user to set the size of the hidden layer when employing trainHL (see
10.2.11).

10.1.29 Boolean steepestDescentOnly
When set to true this ensures g is zero in Equation 3. The default is false.

10.1.30 Matrix targets
The matrix T as provided by the user.

10.1.31 Matrix weights
The matrix W, as determined during training.
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10.1.32 Matrix weightsl
The matrix W;as found using the trainHL method.

10.1.33 Matrix weights2
The matrix W,as found using the trainHL method.

10.2Methods

10.2.1 Matrix Augment_input(Matrix I)

Augments the input matrix [ as described in 10.1.1 and 10.1.2 and returns the resultant
matrix.

10.2.2 void Calculate_normalisation_coefficients(Matrix M)

For a matrix M, this routine computes for each rows the vectors inputScale and inputGain
described in section 10.1.24.

10.2.3 double Calculate_performance(Matrix T, Matrix T)
Given a matrix of targets T and those of calculated targets (e.g. from f(WI)), T, this function
calculates % IIT — T||? - the error vector.

10.2.4 void Calculate_softmax_gradient_function(Matrix W, Matrix I,Matrix T)
Given weights W, inputs I and targets T this function returns VF ().

10.2.5void Calculate_softmax_gradients_function(Matrix W1, Matrix W2,
Matrix I, Matrix T)
Given weights W, and W, , inputs I and targets T this function computes V, F(W,, W,) and

V,F (W, W,). Here the (r, s)th element of V, F(W;, W,) is a;f where (r, s) ranges of the
1

7,8

index elements of W;, and likewise for V, F (W, W,).

10.2.6 void Perform_normalisation(Matrix M )

For a given matrix M, this routine works along the rows of Mapplying the normalisation of
section 10.1.24.

10.2.7 Matrix Softmax_transfer_function(Matrix M)

For each column m of M this function computes the normalised column m where
exp (m;)

Z;'L=1 exp(mj)

where 1 < i < n. This puts every element of the column in the range [0, 1]. The new matrix
M so constructed is returned.

i =

10.2.8 double tansig(double z)

Returns the expression - 1.

1+e~22

10.2.9 Matrix Tansig_transfer_function(Matrix M)

Applies the tansig function of 10.2.8 to each element of the matrix M, and returns the matrix
so formed.
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10.2.10 void train()

This (key) function calculates a weight matrix using the procedure outlined by Equation 1
and Equation 2. The method employed is a deterministic one, in that given a set of inputs
and targets and the parameters of the calculation (i.e. maximum number of iterations, initial
u etc) the results of the calculation are always the same (i.e. weights, number of iterations to
converge etc.). This is because there is no random initial guess to seed the calculation.

10.2.11 void trainHL()

This is a training method which calculates the weights in two weight matrices W;and W,. The
performance function that is minimised is

F(W;, W) = % | (wa(znin)) - T”2

Equation 11

Here 7 is the tansig transfer function, and f is the softmax transfer function. The method is
sometimes described as one which employs a ‘hidden layer'. The size of W,is n by h and
that of W, h by s, where h is the size of the hidden layer. The algorithm employed is a
conjugate gradient like one, similar to Equation 2 for each weight matrix. Again the method
employed is a deterministic, repeatable one.

Once trained and given an input vector p not present in the training data set, the category
this object belongs to can be estimated by selecting the one corresponding to the index of
the maximal element in f(W,t(W;p)).

For most applications, the train method (either with or without a bias) will suffice. However
for some applications it is possible to obtain an improvement in the accuracy of the
categorisation by training with trainHL. TrainHL typically takes much longer than train.

Note that an improvement of the accuracy of the categorisation on the training set may not
lead over to a greater predictive power. It is possible to, too closely fit the weights to the
training data such that poor predictive powers for data, not present in the training set, result.
This is the phenomena of over-fitting. This is again a reason why the algorithm train is
recommended for most applications, and why the default of accelerated convergence is
preferred.

An example of the use of this function with 2 bias vectors is shown below.

NeuralNetwork net = new NeuralNetwork():;
net.inputs = Data I.Transpose();
net.targets = Data T.Transpose();
net.maxNumberOfExperiments = 1000;
net.mu = 0.005;

net.gradientTolerance = 1.0E-7;
net.fixedStepsize = false;
net.showGraphic = true;

net.addBiasl = true;

net.addBias?2 true;

net.trainHL () ;
Graph gr = new Graph();

Matrix a = net.weightsl * net.inputs;
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Matrix a_ = net.Tansig_transfer_function(a);

Matrix a__ = net.Softmax_transfer_function(net.weights2 * net.Augment_input(a_));
Matrix error = net.targets - a__;

int N = net.targets.Ncols;

double mod = 90.0;

Vector ind = new Vector(N);

Vector errorV = new Vector(N);

for (int i = 0; 1 < N; i++)

{
ind[i] = i;
mod = error.GetColumnVector(i).Modulus;
errorV[i] = mod * mod / N;

}

gr.Plot(ind, errorV);

Matrix TbarT = a .Transpose();
double success = 0.0;

for (int 1 = 0; 1 < N; i++)

{

int locl = 0, loc2 = 0;
ThbarT.GetRowVector (i) .MaxL (ref locl);
Data T.GetRowVector (1) .MaxL (ref loc2);

if (locl == loc2)
{
success = success + 1.0;
}
}
MessageBox.Show ("Success rate is:" + (100.0 * success /

N) .ToString () + "%");
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11 Graph class

This class can be used to open a window in which vectors (line graphs) or matrices (contour
plots) are plotted.

11.1Examples

11.1.1 Example 1

Vector v = new Vector(100);
Vector x = new Vector(100);
double t;
for (int i=0;i<100;i++)
{

x[1i] = i;

t = i/10.0;

v[i] = Math.Sin(2.0*Math.PI*t);
}

Graph gr = new Graph();
gr.Plot(x,v);

gr.AddTitle("Practice plot");
gr.AddXLabel ("X label");
gr.AddYLabel("Y label");
gr.AddLegend("first series");
gr.AddXLimits(0.0,100.0);
gr.AddYLimits(-1.1,1.1);

11.1.2 Example 2

//Function with a saddle point
int ms = 100;
int ns = 100;

Vector XS = new Vector (ms);
Vector YS = new Vector (ns);
Matrix ZS = new Matrix (ms,ns);
for (int i = 0 ;1 < ms; i++)
{
XS[i] = -11 + 1i*(22.0/ms);
YS[i] = -11 + 1i*(22.0/ns);
}
for (int i = 0; i < ms; i++)
{
for (int j = 0; j < ns; Jj++)
{
ZS[i,3] = XS[1]1*XS[i] - Y¥YS[Jjl1*YS[jl:;
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// Get the max and the min of the data

double maxZ = -1.0E12;
double minZ = 1.0E12;
for (int i = 0; 1 < m; i++)
{
for (int j = 0; J < n; J++)

{
if (Z2[1i, j] > maxZ)

}

Vector v new Vector (7);
for (int ¢ = 0; ¢ < 7; c++)

{

vic]

}

g.Plot (zS);

minZ + (¢ + 1) * (maxZ - min?Z)

/ 8;

//Al1l the following should produce similar graphs:

//g.Plot (Z2S,7);

//g.Plot (Z2S,vV);

//g.Plot (ZS,XS,YS) ;

//g.Plot (7ZS,XS,YS,7);

//g.Plot (7ZS,XS,YS, V) ;
g.AddTitle (“Saddle function”);

An image of the graph of example 2 is shown in Figure 5.
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Figure 5 - Contour plot of Example 2
11.2Constructor

11.2.1 Graph()
Creates a windows form with a plotting area and menus to

0] Print the graph.
(i) Adjust the range of the axes.
(iii) Save the figure in various file formats.

The data can be zoomed into by clicking in the graph region and scrolling the mouse wheel
forward. Then when zoomed use the bottom and left scroll bars to pan the viewpoint. Scroll
backwards to revert the graph to the starting view.

11.3 Methods
11.3.1 Histogram(Vector v)
11.3.2 Histogram(Vector v, int N)

11.3.3 Histogram(Vector v, Vector bins)

Plots a histogram of the elements of a vector between the minimum and the maximum
values in the vector - see Figure 6. The number of bins in the histogram is either 10, N or the
number of elements in bins. The third routine allows the user to specify the threshold values
for the bins. Otherwise they are deduced proportionately from the data.
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Histogram of a vector
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Figure 6 - Typical Histogram.
C# example:

Graph gr = new Graph();

double max = data.GetColumnVector(®).Max;
double min = data.GetColumnVector(®).Min;
int N = 10;

Vector bins = new Vector(N);

for (int i = 0; i < N; i++)

bins[i] = min + (Convert.ToDouble(i) / N) * (max - min);

}
gr.Histogram(data.GetColumnVector(®), bins);

11.3.4 Plot(Vector v)
Plots the elements of vector vagainst their index number.

11.3.5 Plot(Vector v,String colour ,String style ,int weight)

Plots the elements of vector v against their index number. In addition the colour style and

weight of the series may be specified.

colour may be one of: “Black”, “Red”, “Blue”, “Yellow”, “Green”, “Cyan”, “Magenta”.

style may be one of: “Solid”, “Dash”, “DashDot”, “DashDotDot”, “Dot”.
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weight is a number between 1 and 10 giving the width in pixels of the line.

11.3.6 Plot(Vector v,Vector w)

Plots vector wagainst V. The two vectors must be of the same dimension, otherwise an
error is thrown.

11.3.7 Plot(Vector v,Vector w, String colour ,String style ,int weight)

Plots vector wagainst v. The two vectors must be of the same dimension, otherwise an
error is thrown. In addition the colour, style and weight of the series may be specified as
described in 11.3.5.

11.3.8 Plot(Matrix m)

Plots a contour map of the elements of mwith seven contour levels which are equally
spaced between the minimum and maximum elements of m. The range of the x-axis is the
number of columns of mand the range of the y-axis is the number of rows of m. The colour
ranges from blue (low values) through yellow to red (high values). If a dimension of the
matrix is less than 2 an error is thrown.

11.3.9 Plot(Matrix m,Vector v)

Plots a contour map of the elements of mwith contour levels which are given by the
elements of v. vmust be monotonic increasing. The range of the x-axis is the number of
columns of mand the range of the y-axis is the number of rows of m. If an element of vlies
outside of the bounds of m, then no contour will be drawn. The colour ranges from blue (low
values) through yellow to red (high values. If a dimension of the matrix is less than 2 an error
is thrown.

11.3.10 Plot(Matrix m, int Nc)

Plots a contour map of the elements of mwith NCcontour levels which are equally spaced
between the minimum and maximum elements of m. The range of the x-axis is the number
of columns of mand the range of the y-axis is the number of rows of m. The colour ranges
from blue (low values) through yellow to red (high values). If a dimension of the matrix is
less than 2 an error is thrown.

11.3.11 Plot(Matrix m,Vector X ,Vector Y)

Here X is a vector with dimension equal to the number of columns of mand Y is a vector
with dimension equal to the number of rows of m. If this is not the case an error is thrown.

It is understood that:

() m[i, j]is the value at x-coordinate X[ j] and y-coordinate Y[i].

(i) The elements of X and Y are both monotonically increasing and distinct - otherwise an
error is thrown.

The range of the x and y axes are given by the ranges for X and Y respectively. Seven
equally spaced contours are drawn. No grid lines are drawn.

11.3.12 Plot (Matrix m,Vector X ,Vector Y ,Vector V)

This is as described as in 11.3.11 except that the contours are given by the values of v,
which must be monotonically increasing.
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11.3.13 Plot (Matrix m,Vector X ,Vector Y ,int Nc)
This is as described as in 11.3.11, except that the number of contours is as given by Nc.

11.3.14 Plot (Matrix m, Vector X, Vector Y, int Nc, Color[] colours)

This is as in 11.3.13, with a vector of Colors (System.Drawing.Color). There must be the
same number of elements in colours as is the value of Nc¢, otherwise an error is thrown.

11.3.15 AddIimage(String name, Bitmap image, int blend)

Overlays the plot area with image, of name name. The blend parameter (from 0 to 100)
describes the transparency of the overlay. 100 is 100% image (no plot visible), 0 is 100%
plot, no image visible. 50 is a good compromise value.

11.3.16  Size (int width,int height)
Specifies the graph’ form width and height in pixels. The default is 581 by 437.

11.3.17 AddAnnotation(double x,double y,String s)

Adds the string sto the plotting area at location (X, Yy) . The coordinates xand y are relative
to the data being plotted.

11.3.18 AddTitle(String s)
Adds a title to the plot as given by the string S.

11.3.19 AddXLabel(String s)
Adds an x-axis label as given by string S.

11.3.20 AddYLabel(String s)
Adds a y-axis label as given by string S.

11.3.21 AddLegend(String s)

Adds an item to the legend as given by the string S. Each series plotted is associated
consecutively with a legend string until there are no more series to associate. The use of a
legend within a contour plot will throw an error.

11.3.22 AddXLlimits(double left,double right)
Sets the left and right extremities of the x-axis data to display.

11.3.23 AddYlimits(double bottom,double top)
Sets the bottom and top extremities of the y-axis data to display.

11.3.24 AddXinterval(double itr)
Adds the grid points along the x axis.

11.3.25 AddYiInterval(double itr)
Adds the grid points along the y axis.

11.3.26 Fill (Boolean fill)

When fill is true the contours are filled with colour. Otherwise they are not. The default
value is false.
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11.3.27 Fill (Boolean fill, Boolean contours, int fillSensitivity)

This function affords more control over the colouring in process. When fill is set to true the
contours are filled in with colour. Otherwise they are not. When contours is set to true the
contours are draw in addition (in black). Otherwise they are not drawn. fillSensitivity is an
integer, which is a power of 2, that controls the granularity of the colouring in process. The
values permissible are 8, 16, 32, 64 and 128. Higher values result in increasingly fine detail
yet take longer to do. A value of 16 is a good compromise.

11.3.28 Cls()
Clear the screen. The series, the legend(s), the title and the x and y axis labels are removed.
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12 GraphExport class

This class provides rudimentary functions for creating a contour plot of a 2-dimensional
vector, manipulating it in a palette and saving both it and the associated colour bar to file.

12.1 Constructor

12.1.1 GraphExport(Matrix Z, Vector X, Vector Y, int Nc)

Opens a windows form in preparation for plotting a contour plot of matrix Z, with number of
contours Nc and axes X and Y.

12.2Methods

12.2.1 Plot()
Constructs the contour plot.

12.2.2 Fill(Boolean fill,Boolean contours, int fillSensitivity)
This function behaves according to the description given in 11.3.27.

12.2.3 Addimage(string name, Bitmap image, int blend)
The description of this function is as in 11.3.15.

A coding example of the use of this function is shown below:

a = 4.5;
b =6.0;
c = 3.0;
xmin = -a * 0.4;

xmax = a * 0.4;

ymin = -b * 0.3;

ymax = b * 0.3;

xspacing = 0.01;

yspacing = 0.01;
xnumber = . ((xmax - xmin) / xspacing) + 1;
ynumber = . ((ymax - ymin) / yspacing) + 1;

z = new Matrix(ynumber, xnumber);

XV = new (xnumber);
yVvV = new (ynumber);
( i =0; i < xnumber; i++)

X = xmin + 1 * xspacing;
xv[i] = x;
for ( j = 0; j < ynumber; j++)
{
y = ymin + j * yspacing;

yv[il = y;
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//Get the elevation at the (i,j)th data point, corrresponding to the
//(x,y)th value

//Ellipsoid

z[j, i1 =c * (.o - (x*x/ (@a*a)+y*y/ (b*b)));

levels = new Vector(20);
minZ = z.Min;
maxZ = z.Max;

( k = 0; k < 20; k++)

levels[k] = minZ + (k + 1) * (maxZ - minZ) / (20 + 1);

g = new GraphExport(z, xv, yv, 7);

fillln = true;
contoursAsWell = true;
fillSensitivity = 16;
(fillIn, contoursAsWell, fillSensitivity);
0
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13 Graph3D class

This permits the display of 3D points, whilst allowing the user to adjust the elevation, w and
azimuth, 0, of the parallel projection view of the data. The coordinate system employed, and
the definition of azimuth and elevation with respect to this system is shown in Figure 7.

A
Z-axis

y-axis
>

X-axis ~
N

e ’

Figure 7 - Coordinate system employed for the 3D plotting software.

A screenshot of a typical view is shown in Figure 8. The x axis is coloured red, the y axis is
coloured green and the z axis is coloured blue.
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Figure 8 - 3D Graph screenshot

13.1 Constructor

13.1.1 Graph3D()

A Bas-

=@ x

g.PixelF
|| Fornat8bppIndexed) ;

g. Inaging .PixelFormat. Format8bppIndexed) ;

ng. Inaging. InageLock

ta.Stride * bmData.Height);
Data.Width * brData.Height);

ode.MriteOnly, System.Drawing.Imaging.Pixelfornat.Fornat8bpp

s bl .

Creates the display region. It is necessary to call this constructor before doing anything else.

C# example:

Graph3D gr3D = new Graph3D();

13.2Properties

13.2.1 Boolean drawAxes

Determines if grid, axes, axes tick marks and axes labels are drawn or not.

13.2.2 Boolean drawGrid

Determines if a grid is to be drawn or not. Only applies if drawAxes is set to true.

13.2.3int numberOfTicks

Sets or gets the number of tick positions on the axes. Grid lines are drawn at the tick

positions.

13.3Methods

13.3.1 void AddXAxisLimits(double XMin, double XMax)
Sets the X axis limits. If these are provided then these limits will not be calculated

from the data itself.

96




13.3.2void AddYAxisLimits(double YMin, double XMin)

Sets the Y axis limits. If these are provided then these limits will not be calculated
from the data itself.

13.3.3void AddZAxisLimits(double ZMin, double YMin)

Sets the Z axis limits. If these are provided then these limits will not be calculated
from the data itself.

13.3.4 void BackgroundColour(Color backgroundColour)
Permits the background colour of the display region to be specified.

13.3.5Cls()
Clears the screen.

13.3.6 Plot(Vector x, Vector y, Vector z, Vector s)

Plots points whose X, y and z coordinates are provided in the three vectors. S is a vector of
intensity values from 1 to 100. The colour plotted ranges from blue (1) to yellow (100) These
vectors must be of the same length, otherwise an error is thrown. The coordinates of any
particular point are represented by the same index position in each vector — so that care
must be taken to provide the data in this way.

C# example:

Graph3D gr3D = new Graph3D()

int L = iAdd - 1;
gr3D.Cls () ;

if (L > 0)

{

gr3D.numberOfTicks = 4;

gr3D.BackgroundColour (Color.White) ;

gr3D.drawGrid = true;

gr3D.Plot (X .SubVector (0, L), Y .SubVector(0, L), Z .SubVector (0,
L), S .SubVector (0, L));
}

13.3.7 Plot(Vector x, Vector y, Vector z, Color c)

Plots points whose X, y and z coordinates are provided in the three vectors. C is the color in
which all points are to be plotted. The vectors must all be the same length, otherwise an
error is thrown.
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14 Video class

This class permits the display of a vector or matrix against time either in replay or in real
time.

14.1 Constructor

14.1.1 Video()
Creates the display region. It is necessary to call this constructor before doing anything else.

C# example:

Video vid = new Video();

14.2 Methods

14.2.1void AddSeries(Vector v)
Adds a series of points for subsequent replay. See 14.2.2.

14.2.2 Void PlayVideo(Vector t)

Plays a video of series previously added via the command AddSeries. The rate at which
these are replayed is governed by the time vector supplied t.

C# example:

Video vid = new Video();

double f = 1.9; //Hz

for (int i = @; i < noTimePoints; i++)

{
t[i] = i;
vi[i] = Math.Sin(2.0 * Math.PI * f * t[i] / 100.0);
v2[i] = Math.Cos(2.0 * Math.PI * 2 * £ * t[i] / 20.0);

vid.AddMatrix(m);

vid.AddSeries(vl);
vid.AddSeries(v2);

vid.AddTitle("Test Vector Video");
vid.AddXLabel("Index");
vid.AddYLabel("Signal");
vid.AddLegend("Sinusoid 1");
vid.AddLegend("Sinusoid 2");

vid.PlayVideo(t);
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14.2.3 void AddMatrix(Matrix m)
Add a matrix of values representing an grayscale image which is to be displayed later.

14.2.4 void PlayMatrixVideo(Vector t)

Plays a video of images previously added via the commandAddMatrix. The rate at which
these are replayed is governed by the time vector supplied t.

C# example:

Video vid = new Video();
vid.SetContrast(200);

Random r = new Random();

double f = 1.9; //Hz
for (int i = @; i < noTimePoints; i++)
{
Matrix m = new Matrix(358, 128);
t[i] = i,
for (int j = ©; j < m.Nrows; Jj++)
{
for (int k = @; k < m.Ncols; k++)
{
m[j, k] = r.Next(255);
}
}

vid.AddMatrix(m);

vid.PlayMatrixVideo(t);

14.2.5void AddRealTimeMatrix(Matrix m)

This function plots an image represented by a matrix in real time as it is provided. It is the
responsibility of the caller to manage the rate of play, stopping, pausing etc.

C# example:

Video vid = new Video();
for (int i = @; i < noTimePoints; i++)
{
for (int j = ©; j < m.Nrows; Jj++)
{
for (int k = ©; k < m.Ncols; k++)

{
}

m[j, k] = r.Next(255);
}
vid.AddRealTimeMatrix(m);

System.Threading.Thread.Sleep(1000);
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14.2.6 void AddRealTimePoint(int index, double pt, double t)
This function plots pt against t as it is supplied, allowing real time graphing of a signal.

The index value allows multiple signal values to be plotted in the same video.

C# example:

Video vid = new Video();

double f = 1.9; //Hz

for (int i = @; i < noTimePoints; i++)

{
t[i] = i;
vli[i] = Math.Sin(2.0 * Math.PI * f * t[i] / 100.0);
v2[i] = Math.Cos(2.0 * Math.PI * 2 * £ * t[i] / 20.0);

vid.AddMatrix(m);

vid.AddSeries(vl);
vid.AddSeries(v2);

vid.AddTitle("Test Vector Video");
vid.AddXLabel("Index");
vid.AddYLabel("Signal");
vid.AddLegend("Sinusoid 1");
vid.AddLegend("Sinusoid 2");
vid.AddYLimits(-1.0, 1.0);

for (int i = @; i < 1000; i++)

{
vid.AddRealTimePoint (@, vi[i], t[i]);
vid.AddRealTimePoint (1, v2[i], t[i]);
System.Threading.Thread.Sleep(1000);
}

14.2.7 void AddRealTimeSeries(int index, Vector x,Vector y)

Adds a series of points whose x and y coordinates are represented by x and y respectively
to be plotted in real time. The use of the index parameter is special for this function. When it
is set to zero the screen is cleared and plotting of series starts again. This is useful for
plotting (for example) radar detections at each sweep, for autonomous car use.

C# example:

Video vid = new Video();

do
{
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if (targetsPerLine.Count == 0)
if (chkBlankscreenOnNoDetections.Checked)

vid.Cls();

}

else

{

for (int i = @; i < targetsPerLine.Count; i++)

{

vid.AddRealTimeSeries(i, bearingsPerLine[i], targetsPerLine[i]);

vid.AddAnnotation(bearingsPerLine[i][@], targetsPerLine[i][@],
targetsPerLine[i].Dim.ToString());
vid.AddLegend("Target” + (i + 1).ToString());

¥
¥

} while(t < 1000);

14.2.8 void AddRealTimeSeries(int index, Vector x, Vector y, String color, String
style, int weight)

Adds a series of points whose x and y coordinates are represented by x and y respectively

to be plotted in real time. The use of the index parameter is special for this function. When it

is set to zero the screen is cleared and plotting of series starts again. This is useful for

plotting (for example) radar detections at each sweep, for autonomous car use.

In addition the colour, style and weight of the line may be specified.
The colour may be one of the following strings:

Black
Red
Blue
Yellow
Green
Cyan
Magenta
White

The line style may be one of the following (the default is solid):

e Point — in this case individual points are not connected. In all of the following cases
they are connected.

Solid

Dash

DashDot

DashDotDot

Dot

C# example:
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String color;
String style = "Point";
int weight = 2;

if (cbBackgroundColour.Text == "White")
{
color = "Black";
¥
else
{
color = "White";
¥

vid.DisplaylLegends(false);

if (targetsPerFrame.Count == 9)
{

}

else

{

vid.Cls();

int iAdd 0;
for (int i = @; i < targetsPerFrame.Count; i++)

{
if (targetsPerFrame[i].detections != null)
{
if (targetsPerFrame[i].detections.Count > 9)
{
Vector vy = new Vector(targetsPerFrame[i].detections.Count);
Vector vx = new Vector(targetsPerFrame[i].detections.Count);
for (int j = @; j < vy.Dim; j++)
{
vx[j] = targetsPerFrame[i].detections[j].X;
vy[j] = targetsPerFrame[i].detections[j].Y;
}
vid.AddRealTimeSeries(iAdd, vx, vy, color, style, weight);
iAdd++;
}

14.2.9 void AddRealTimeMatrix(Matrix m)
Adds a matrix representing an image to be plotted in real time.

C# example:
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Video vid = new Video();
vid.SetContrast(9);

for (int i = @0; i < noTimePoints; i++)

{

for (int j = @; j < m.Nrows; Jj++)
{
for (int k = @; k < m.Ncols; k++)

{
}

m[j, k] = r.Next(255);
}
vid.AddRealTimeMatrix(m);

System.Threading.Thread.Sleep(1000);

14.2.10 void AddTitle(String title)
Adds a title to the graphic.

14.2.11 void AddXLabel(String xlabel)
Adds an x axis label to the graphic.

14.2.12 void AddXLimits(double left, double right)
Imposes limits for the X axis.

14.2.13 void AddYLimits(double top, double bottom)
Imposes limits for the Y axis.

14.2.14 void AddXInterval(double interval)
Sets the interval for the labelling on the x axis.

14.2.15 void AddYInterval(double interval)
Sets the interval for the labelling on the y axis.

14.2.16 void AddLegend(String s)

Adds a legend represented by the string s.

Each series plotted is associated consecutively with a legend string until there are no more
series to associate.

14.2.17 void AddAnnotation(double x, double y, String ann)

This adds the string ann at the location specified by x and y. The location is with respect to
the data.

14.2.18 Void AddAnnotation(double x, double y, String ann, String colour)
Adds an annotation of the specified colour. Colour may be as specified in 14.2.8.
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14.2.19 Void Cls()
Clears the video form.

14.2.20 Void DisplayLegends(Boolean display)
If display is set to false, legends are inhibited, otherwise they are displayed.

C# example:
vid.DisplayLegends (false) ;

14.2.21 Void SetBackgroundColour(String colour)
Sets the background colour. Colour may be any of the strings listed in 14.2.8.

14.2.22 void SetContrast(byte contrast)

Allows a number to be entered which determines the contrast of the greyscale image plotted
via PlayMatrixVideo or AddRealTimeMatrix. The value is between 0 and 255. 0 gives rise to

a darkened image (the plot of the maximum value of the data would be black) and 255 yields
a brightened image (the plot of the minimum value of the data would be white).

See 14.2.9 for an example.

15 Delegate types

15.1.1 delegate Vector NelderMeanFit(Vector w, Vector beta)
A delegate function used in Nelder-Mean simplex method minimisation. See 5.4.15.

15.1.2 delegate Vector NonlinearFit(Vector w, Vector beta)
A delegate function used in non linear fitting. See 5.4.16.

15.1.3 delegate double NonlinearFit2(Vector w, Vector beta)
A delegate function used in non-linear fitting. See 5.4.17.

15.1.4 delegate ComplexVector ComplexNonlinearFit(ComplexVector w,
ComplexVector beta)

A delegate function used in non linear fitting. See 7.4.11.

15.1.5 delegate Complex ComplexNonlinearFit2(ComplexVector w,
ComplexVector beta)

A delegate function used in non linear fitting. See 7.4.12.
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