
Contents

1 INTRODUCTION .. 2

2 PRE-REQUISITES. ... 3

3 INSTALLATION/REMOVAL ... 3

4 CURRENT LIMITATIONS ... 5

5 PF4FILE ... 6

5.1 STATIC IMAGE .. 6
5.1.1 PF4Image.. 6

5.1.1.1 Top panel .. 6
5.1.1.2 Bottom left panel .. 7
5.1.1.3 Bottom right panel .. 7

5.1.2 Pallet ... 8
5.2 VIDEO .. 9

5.2.1 PF4Video .. 9
5.2.1.1 Top Panel .. 9
5.2.1.2 Bottom Left Panel ... 9
5.2.1.3 Bottom Right Panel ... 10

5.2.2 Player .. 11
5.2.2.1 Bottom Left Panel ... 11
5.2.2.2 Bottom Right Panel ... 11
5.2.2.3 To Right Panel .. 12

6 FILE BYTE STRUCTURE OF A .PF4 FILE 13

6.1 CODE FRAGMETS ... 17

2

1 Introduction
This is a manual for the installation and use of the application
‘PF4File’. The program is a Windows application, for creating
and viewing a .pf4 file. This is an emerging file format which
currently uses up to 256 distinct colours. With this program one
can perform two functions:

1. Create a .pf4 static image file from a .bmp file and
conversely.

2. Create a .pf4 video file from a series of .bmp files and
conversely.

The pf4 specification is a lossless compression which results in
file sizes of 1/6 to 1/15 (or more) of the equivalent bitmap
image.

The .pf4 specification is published in this manual for both static
images and video files. This application permits the user to gain
familiarity with the format and its advantages.

3

2 Pre-requisites.
1. A PC running Windows 7 or above.

2. A USB stick or optical drive containing the program

setup files, together with this manual (available online).

3 Installation/Removal
The program is installed by inserting the supplied stick or disc
into the PC and running the ‘setup.exe’ program on it.

The program can be removed from the PC, by using the
‘Program & Features’ menu from within Control Panel.

4

The program is robust to erroneous parameter input, but not
completely fool proof.

5

4 Current Limitations
There are a few limitations to the program as it currently stands
(March 2025):

1. The program is limited to files and videos with 256
colours or less. This will be checked prior to creating an
image or video.

2. The ‘Player’ of the .pf4 video loaded is not a
professional one and there is no streaming of video
frames whilst playing, for example. All frames must have
been loaded (done by the application) prior to play and
this can take some time for a large video. There must be
plenty available RAM on the computer running the
application in this case.

It is recommended to run the application (particularly when
creating or replaying videos) on a PC with a reasonable amount
of memory (RAM and hard disc space).

6

5 PF4File
The application has currently four tabs, two for those of a static
image and two for those of a video:

5.1 Static Image

5.1.1 PF4Image

5.1.1.1 Top panel

The text box Working directory is the directory where files
created will be saved. This must be selected before the
application will function.

7

The text box Working file is the file that the newly created .pf4
file is based upon.

The button Load and Setup loads either the .pf4 or the .bmp
file into memory and displays it in the Palette.

5.1.1.2 Bottom left panel

A .pf4 file with the root name of File name root is created with
compression of Compression and saved in the Working
directory. This is the function of the button Create PF4 Image
File. Compression 𝑐 reduces the width and height of the image
by a factor of 1/𝑐 on saving (1 ≤ 𝑐 ≤ 15). The width and height

must be a multiple of 𝑐.

The algorithm for Compression and Decompression will be
described in due course. It is a lossless one.

5.1.1.3 Bottom right panel

The button Export PF4 Image To BMP exports the .pf4 file
created to a .bmp and saves it in the Working directory.
Export root name is the filename root.

8

5.1.2 Pallet

This tab contains a picture box control for receiving the created
image. The image may be resized with a new or original size by
using the Palette Width (pixels), Palette Height (pixels) text
boxes and Resize button. The image is saved with the Save
button.

9

5.2 Video

5.2.1 PF4Video

5.2.1.1 Top Panel

The Working directory for videos can be selected. This is
where all created videos and exported frames can be found. In
the Working file textbox a .pf4 file can be selected and then
loaded. The Load button performs this load. Not that for a large
.pf4 file this may take some time.

5.2.1.2 Bottom Left Panel

The Create PF4 Video file creates a .pf4 video file from a

series of .bmp frames from Frame from to frame to. The

10

names of the bmp files must be of the form Frame root name

plus ‘_1’, ‘_2’, … etc. Frame rate is the frame rate in frames per

second and Compression is the compression employed for

individual frames of the video. The algorithm for compression of

individual frames of the video is as described in section 6. Be

patient as the creation for large videos may take some time.

As the creation can take some time the process can be

irretrievably stopped by using the Stop button.

5.2.1.3 Bottom Right Panel

The individual frames of a .pf4 video may be created to disc via
the Export Frames button. The exported filetype may be either
.pf4 or .bmp. The frames to export are Frame from to frame to.
The text box Export root name gives the root name of the
exported frames.

11

5.2.2 Player

5.2.2.1 Bottom Left Panel

A loaded video may be played via the Play Video button and
can be paused and stopped with the Pause and Stop button
respectively. The video is played From frame to To frame. The
Number of frames in the video, the Frame Width, the Frame
Height and the Frame rate are displayed.

5.2.2.2 Bottom Right Panel

The picture box control for display of video and frames may be
resized to Width and Height.

12

5.2.2.3 To Right Panel

The button Show frame display the Frame number indicated.

13

6 File Byte Structure of a .pf4 File
This section describes the file byte structure of a .pf4 file as
created by this application. It also permits the creation of a .pf4
file by an independent program which can then be loaded by
this application, or an independent program.

A file ‘inputfile’ would be read into an array of bytes by a line

of C# code such as in Table 1

byte[] pf4Data = File.ReadAllBytes(inputfile);

Table 1

Similarly an array of bytes would by written to file, ‘filename’

by a line of C# code such as in Table 2.

File.WriteAllBytes(filename, byteArray);

Table 2

byteArray is a sequence of bytes having the following structure

(and in the order stated):

[FileType][NumberOfColours][Compression][Colours][ImageWidth][Im

ageHeight][SpatialTrackLengths][SpatialTracksDuration][DictionarySiz

e][DictionaryBytes][SpatialTrackColours]

For a static image there is a single instance of

[SpatialTrackLengths][SpatialTracksDuration][DictionarySize][Dictiona

ryBytes][SpatialTrackColours]. For a video the fields

[SpatialTrackLengths][SpatialTracksDuration][SpatialTrackColours]

repeat for each frame of the video.

[FileType] – 1 byte, set to 0 (to indicate a static image as opposed to a

1 for a video).

14

[NumberOfColours] – 1 byte, set to the number of distinct colours in

the image.

[Compression] – 1 byte, set to the value of 𝑐, as described in section

5.1.1.2.

[Colours] – 3 x NumberOfColours bytes. For each colour 3 bytes are

supplied representing the red, green and blue values (in that order

consecutively and one colour followed by another).

[ImageWidth] – 4 bytes, an integer representing the width (in pixels) of

the compressed image.

[ImageHeight] – 4 bytes, an integer representing the height (in pixels)

of the compressed image.

The next four fields are used to describe how the structure of the

compressed image is described.

If 𝑤 and ℎ are the width and height of the original image, then 𝑤̅ =

𝑤/𝑐 and ℎ̅ = ℎ/𝑐 are the width and height of the compressed image

respectively. 𝑤̅ℎ̅ SpatialTracks are saved each having

SpatialTrackLength, where each SpatialTrack consists of up to 𝑐2

trails as described subsequently. Values for 𝑐 of 8 and 10 are

recommended.

Colours, of a single pixel, are stored by their index number

(corresponding to a number between 0 and 255) as in their location in

the [Colours] array, and not by RGB values.

SpatialTrackLengths and SpatialTrackDuration and

SpatialTrackColours will firstly be described, by example, by referring

to the 16 pixels corresponding to the case where 𝑐 = 4, and to the 25

pixels in the case where 𝑐 = 5.

15

1 2 5 10

3 4 7 12

6 8 9 14

11 13 15 16

Table 3

1 2 5 10 17

3 4 7 12 19

6 8 9 14 21

11 13 15 16 23

18 20 22 24 25

Table 4

The 16 or 25 pixels are cycled through in the order of the numbering.

Trails are tuples representing the number of occurrences of the colour

and the colour index in that order. The pixels are cycled through until

they are exhausted. They may be up to 16 or 25 trails. The idea is that

the ordering of Table 3 and Table 4, is most likely to achieve an

efficiency in the storage because similar colours are most likely to be

found corresponding to this sequence, as the ordering is in ascending

order of the distance from the top left index..

Thus the trails and the byte storage for a cell with the (index of)

colours of Table 3 is:

16

0 0 12 15

0 0 12 13

12 12 15 14

15 13 14 14

Table 5 (Colours with index values 12, 13, 14,15)

(4,0),(4,12),(3,15),(2,13),(3,14)

Figure 1

Note that the sum of the values for the first ordinate is 16. Thus
we have:

[SpatialTrackLengths] – This is a byte representing the number
of bytes in all the trails of SpatialTrackColours or
SpatialTrackDuration. Thus in Figure 1 it is 10. There is an

entry for each of the 𝑤̅ℎ̅ spatial tracks and the order is from left
to right top to bottom.

[SpatialTrackDuration] – these are bytes representing the
length of each trail. Thus it is the sequence 4,4,3,2,3 in Figure
1. The ordering of the sequences is left to right top to bottom.

[DictionarySize] – This is a single byte that gives the number of
bits that are needed to store NumberOfColours. Thus it is the

smallest integer 𝑑 such that 2𝑑 ≥ 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑜𝑙𝑜𝑢𝑟𝑠.

[DictionaryBytes] – Each colour is represented by 𝑑 bits. This is
the dictionary of colours. Each colour’s representation is saved

17

as a byte. The order of the bytes is the order in which the
colours were enumerated.

[SpatialTrackColours] – this is a sequence of bytes representing
the spatial track index colour of each trail. Thus it is the
sequence 0,12,15,13,14 in Figure 1. There is a sequence for

each of the 𝑤̅ℎ̅ spatial tracks and the order is from left to right
top to bottom. The bytes are not saved directly but the indices
of the colours are saved and then retrieved as bits according to
their dictionary representation.

6.1 Code Fragmets
Some code fragments are given to assist in writing code both to
create a .pf4 file and to read in from one.

An example of writing to a byte array to populate the fields, to
save to disc, would be as in Figure 2. Note that if we are writing
a video the code in blue is repeated for each frame of the video.

List<byte> byteArray = new List<byte>();

byteArray.Add(FileType);
byteArray.Add(NumberOfColours);
byteArray.Add(Compression);

for (int i = 0; i < NumberOfColours; i++)
{
 byteArray.Add(Colours[3 * i]);
 byteArray.Add(Colours[3 * i + 1]);
 byteArray.Add(Colours[3 * i + 2]);
}

byte[] bytesInInt = BitConverter.GetBytes(ImageWidth);
for (int i = 0; i < bytesInInt.Length; i++)
{
 byteArray.Add(bytesInInt[i]);
}

18

bytesInInt = BitConverter.GetBytes(ImageHeight);
for (int i = 0; i < bytesInInt.Length; i++)
{
 byteArray.Add(bytesInInt[i]);
}

if (FileType == 0)
{

 List<bool>[] dictionary = new
List<bool>[NumberOfColours];
byte[] dictionaryByte = new byte[NumberOfColours];
byte dictionarySize = 2;
//Create dictionary
createDictionary(ref dictionary, ref dictionarySize);
writeDictionaryParameters(dictionary, dictionarySize,
ref byteArray);

 for (int n = 0; n < ImageHeight; n++)
 {
 for (int m = 0; m < ImageWidth; m++)
 {
 byteArray.Add(SpatialTrackLengths[m, n]);
 }
 }

 for (int n = 0; n < ImageHeight; n++)
 {
 for (int m = 0; m < ImageWidth; m++)
 {
 for (int l = 0; l < SpatialTrackLengths[m,
n]; l++)
 {
 byteArray.Add(SpatialTracksDuration[m,
n][l]);
 }
 }
 }

 setSpatialTrackColours(ref byteArray);

19

}

public void createDictionary(ref List<bool>[]
dictionary, ref byte dictionarySize)

 {

 //Find how many bits we need to represent all the
colours.

 dictionarySize = 2;

 for (int i = 0; i < 8; i++)

 {

 if (Math.Pow(2, i) >= NumberOfColours)

 {

 dictionarySize = (byte)i;

 break;

 }

 }

 List<List<bool>> listToSelectFrom =
returnLists(dictionarySize);

 //populate the dictionary

 for (int l = 0; l < NumberOfColours; l++)

 {

 dictionary[l] = listToSelectFrom[l];

 }

 }

20

 public void writeDictionaryParameters(List<bool>[]
dictionary, byte dictionarySize, ref List<byte>
byteArray)

 {

 byte[] dictionaryByte = new byte[NumberOfColours];

 for (int i = 0; i < NumberOfColours; i++)

 {

 convertToByte(dictionary[i], ref
dictionaryByte[i]);

 }

 byteArray.Add(dictionarySize);

 for (int k = 0; k < NumberOfColours; k++)

 {

 byteArray.Add(dictionaryByte[k]);

 }

 }

private void setSpatialTrackColours(ref List<byte> byteArray)

{

 List<bool> ST = new List<bool>();

 List<bool>[] dictionary = new List<bool>[NumberOfColours];

 byte[] dictionaryByte = new byte[NumberOfColours];

 byte dictionarySize = 2;

 //Create dictionary

 createDictionary(ref dictionary, ref dictionarySize);

21

 for (int i = 0; i < NumberOfColours; i++)

 {

 convertToByte(dictionary[i], ref dictionaryByte[i]);

 }

 byteArray.Add(dictionarySize);

 for (int k = 0; k < NumberOfColours; k++)

 {

 byteArray.Add(dictionaryByte[k]);

 }

 for (int n = 0; n < ImageHeight; n++)

 {

 for (int m = 0; m < ImageWidth; m++)

 {

 for (int l = 0; l < SpatialTrackLengths[m, n]; l++)

 {

 for (int k = 0; k < dictionary[SpatialTracksColours[m,
n][l]].Count; k++)

 {

 ST.Add(dictionary[SpatialTracksColours[m, n][l]][k]);

 }

 }

 }

22

 }

 BitArray STArray = new BitArray(ST.Count);

 for (int i = 0; i < ST.Count; i++)

 {

 STArray[i] = ST[i];

 }

 byte[] STByteArray = new byte[1 + STArray.Count / 8];

 STArray.CopyTo(STByteArray, 0);

 for (int l = 0; l < STByteArray.Length; l++)

 {

 byteArray.Add(STByteArray[l]);

 }

}

Figure 2

23

An example of reading the fields of the .pf4 file ready for use in
an application would be as in Figure 3. If we are reading from a
video the code highlighted in blue has got to be repeated for
each frame of the video.

//Create PF4 object from disk file.

int iCount = 0; //This is the number of bytes read.

byte[] pf4Data = File.ReadAllBytes(inputfile);

FileType = pf4Data[iCount];

iCount += 1;

NumberOfColours = pf4Data[iCount];

iCount += 1;

Compression = pf4Data[iCount];

iCount += 1;

//3 bytes per colour

Colours = new byte[3 * NumberOfColours];

for (int i = 0; i < NumberOfColours; i++)

{

 Colours[3 * i] = pf4Data[iCount + 3 * i];

 Colours[3 * i + 1] = pf4Data[iCount + 3 * i + 1];

 Colours[3 * i + 2] = pf4Data[iCount + 3 * i + 2];

}

iCount += (3 * NumberOfColours);

//2 bytes for the width

byte[] bytesInInt = new byte[sizeof(int)];

for (int i = 0; i < sizeof(int); i++)

{

24

 bytesInInt[i] = pf4Data[iCount + i];

}

ImageWidth = BitConverter.ToInt32(bytesInInt, 0);

iCount += sizeof(int);

//2 bytes for the height

int imageWidth = ImageWidth;

bytesInInt = new byte[sizeof(int)];

for (int i = 0; i < sizeof(int); i++)

{

 bytesInInt[i] = pf4Data[iCount + i];

}

ImageHeight = BitConverter.ToInt32(bytesInInt,0);

int imageHeight = ImageHeight;

iCount += sizeof(int);

if (FileType == 0)

{

 //we have a static image

 //The spatial track lengths

 SpatialTrackLengths = new byte[imageWidth, imageHeight];

 int totalSpatialTrackLength = 0;

 for (int n = 0; n < imageHeight; n++)

 {

 for (int m = 0; m < imageWidth; m++)

 {

 SpatialTrackLengths[m, n] = pf4Data[iCount + (n * imageWidth

25

+ m)];

 totalSpatialTrackLength += SpatialTrackLengths[m, n];

 }

 }

 iCount += (imageWidth * imageHeight);

 //the spatial tracks themselves

//The dictionary

 DictionarySize = 2;

 Dictionary = new List<bool>[NumberOfColours];

 getDictionary(ref pf4Data, ref DictionarySize, ref Dictionary, ref
iCount);

 SpatialTracksDuration = new List<byte>[imageWidth, imageHeight];

 SpatialTracksColours = new List<byte>[imageWidth, imageHeight];

 int iSpatialTrackCount = 0;

 for (int n = 0; n < imageHeight; n++)

 {

 for (int m = 0; m < imageWidth; m++)

 {

 SpatialTracksDuration[m, n] = new List<byte>();

 for (int l = 0; l < (SpatialTrackLengths[m, n]); l++)

 {

 SpatialTracksDuration[m, n].Add(pf4Data[iCount + l]);

 }

 iCount += (SpatialTrackLengths[m, n]);

26

 iSpatialTrackCount += (SpatialTracksDuration[m, n].Count);

 }

 }

 getSpatialTrackColours(ref pf4Data, iCount);

}

private void getSpatialTrackColours(ref byte[] pf4Data, ref int iCount,
byte dictionarySize, List<bool>[] dictionary)

{

 byte[] byteArray = new byte[pf4Data.Length - iCount];

 for (int i = 0; i < byteArray.Length; i++)

 {

 byteArray[i] = pf4Data[iCount + i];

 }

 BitArray STColours = new BitArray(byteArray);

 int iCount_ = 0;

 for (int n = 0; n < ImageHeight; n++)

 {

 for (int m = 0; m < ImageWidth; m++)

 {

 SpatialTracksColours[m, n] = new List<byte>();

 for (int l = 0; l < (SpatialTrackLengths[m, n]); l++)

 {

27

 reconstructSpatialTracks(iCount_, m, n, dictionarySize,
STColours, dictionary);

 iCount_ += dictionarySize;

 }

 }

 }

 if (((double)iCount_ / 8) == (iCount_ / 8))

 {

 iCount += (iCount_ / 8);

 }

 else

 {

 iCount += (1 + iCount_ / 8);

 }

}

Figure 3

28

Paul D. Foy

Mathematical Services

March 2025

